OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 26 — Sep. 10, 2001
  • pp: 4697–4705

Near-field artifact reduction in planar coded aperture imaging

Roberto Accorsi and Richard C. Lanza  »View Author Affiliations


Applied Optics, Vol. 40, Issue 26, pp. 4697-4705 (2001)
http://dx.doi.org/10.1364/AO.40.004697


View Full Text Article

Enhanced HTML    Acrobat PDF (6188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coded apertures for imaging problems are typically based on arrays having perfect cross-correlation properties. These arrays, however, guarantee a perfect point-spread function in far-field applications only. When these arrays are used in the near-field, artifacts arise. We present a mathematical derivation capable of predicting the shape of such artifacts. The theory shows that methods used in the past to compensate for the effects of background nonuniformities in far-field problems are also effective in reducing near-field artifacts. The case study of a nuclear medicine problem is presented to show good agreement of simulation and experimental results with mathematical predictions.

© 2001 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.0110) Imaging systems : Imaging systems
(110.1220) Imaging systems : Apertures

History
Original Manuscript: December 1, 2000
Revised Manuscript: May 16, 2001
Published: September 10, 2001

Citation
Roberto Accorsi and Richard C. Lanza, "Near-field artifact reduction in planar coded aperture imaging," Appl. Opt. 40, 4697-4705 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-26-4697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987). [CrossRef]
  2. G. K. Skinner, “Imaging with coded-aperture masks,” Nucl. Instrum. Methods Phys. Res. A 221, 33–40 (1984). [CrossRef]
  3. R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J. 153, L101–L106 (1968). [CrossRef]
  4. J. G. Ables, “Fourier transform photography: a new method for X-ray astronomy,” Proc. Astron. Soc. Aust. 1, 172–173 (1968).
  5. E. E. Fenimore, T. M. Cannon, D. B. Van Hulsteyn, P. Lee, “Uniformly redundant array imaging of laser driven compressions: preliminary results,” Appl. Opt. 18, 945–947 (1979). [CrossRef] [PubMed]
  6. Y. W. Chen, M. Yamanaka, N. Miyanaga, T. Yamanaka, S. Nakai, C. Yamanaka, S. Tamura, “Three-dimensional reconstruction of laser-irradiated targets using URA coded aperture cameras,” Opt. Commun. 71, 249–255 (1989). [CrossRef]
  7. K. F. Koral, J. E. Freitas, W. L. Rogers, J. W. Keyes, “Thyroid scintigraphy with time-coded aperture,” J. Nucl. Med. 20, 345–349 (1979). [PubMed]
  8. W. L. Rogers, K. F. Koral, R. Mayans, P. F. Leonard, J. H. Thrall, T. J. Brady, J. W. Keyes, “Coded-aperture imaging of the heart,” J. Nucl. Med. 21, 371–378 (1980). [PubMed]
  9. H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl. Med. 13, 382–385 (1972). [PubMed]
  10. E. E. Fenimore, T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978). [CrossRef] [PubMed]
  11. E. E. Fenimore, T. M. Cannon, “Uniformly redundant arrays: digital reconstruction methods,” Appl. Opt. 20, 1858–1864 (1981). [CrossRef] [PubMed]
  12. Y. H. Liu, A. Rangarajan, D. Gagnon, M. Therrien, A. J. Sinusas, F. J. Th. Wackers, I. G. Zubal, “A novel geometry for SPECT imaging associated with the EM-type blind deconvolution method,” IEEE Trans. Nucl. Sci. 45, 2095–2101 (1998). [CrossRef]
  13. K. F. Koral, W. L. Rogers, “Application of ART to time-coded emission tomography,” Phys. Med. Biol. 24, 879–894 (1979). [CrossRef] [PubMed]
  14. J. S. Fleming, B. A. Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res. A 221, 242–246 (1984). [CrossRef]
  15. M. L. McConnell, D. J. Forrest, E. L. Chupp, P. P. Dunphy, “A coded aperture gamma ray telescope,” IEEE Trans. Nucl. Sci. NS-29, 155–159 (1982). [CrossRef]
  16. P. P. Dunphy, M. L. McConnell, A. Owens, E. L. Chupp, D. J. Forrest, “A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy,” Nucl. Instrum. Methods Phys. Res. A 274, 362–379 (1989). [CrossRef]
  17. U. B. Jayanthi, J. Braga, “Physical implementation of an antimask in URA based coded mask systems,” Nucl. Instrum. Methods Phys. Res. A 310, 685–689 (1991). [CrossRef]
  18. R. Accorsi, F. Gasparini, R. C. Lanza, “An improved method for radiation imaging using coded apertures,” U.S. patent application 60/236, 878 (29September2000).
  19. T. M. Cannon, E. E. Fenimore, “Tomographical imaging using uniformly redundant arrays,” Appl. Opt. 18, 1052–1057 (1979). [CrossRef] [PubMed]
  20. S. R. Gottesman, E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989). [CrossRef] [PubMed]
  21. S. R. Gottesman, E. J. Schneid, “PNP—a new class of coded aperture arrays,” IEEE Trans. Nucl. Sci. NS-33, 745–749 (1986). [CrossRef]
  22. K. Byard, “Synthesis of binary arrays with perfect correlation properties—coded aperture imaging,” Nucl. Instrum. Methods Phys. Res. A 336, 262–268 (1993). [CrossRef]
  23. E. E. Fenimore, “Large symmetric π transformations for Hadamard transforms,” Appl. Opt. 22, 826–829 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited