OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 26 — Sep. 10, 2001
  • pp: 4738–4745

Characterization of two-dimensional finite-aperture wire grid polarizers by a spectral-domain technique

Michael A. Jensen and Gregory P. Nordin  »View Author Affiliations


Applied Optics, Vol. 40, Issue 26, pp. 4738-4745 (2001)
http://dx.doi.org/10.1364/AO.40.004738


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the transmission characteristics of perfectly conducting two-dimensional wire grid polarizers fabricated in finite and infinite apertures using a rigorous spectral-domain mode-matching method. Specifically, the transmission coefficient for both transverse-electric and transverse-magnetic polarizations, extinction ratio, and diffraction pattern are characterized for a wide variety of geometric and material parameters including aperture dimension, conducting wire fill factor, wire spacing, polarizer thickness, material dielectric constants, and incident wave arrival angle. The results indicate that the transmission behavior is largely insensitive to aperture dimension.

© 2001 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices

History
Original Manuscript: March 22, 2001
Revised Manuscript: June 15, 2001
Published: September 10, 2001

Citation
Michael A. Jensen and Gregory P. Nordin, "Characterization of two-dimensional finite-aperture wire grid polarizers by a spectral-domain technique," Appl. Opt. 40, 4738-4745 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-26-4738


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960). [CrossRef]
  2. J. B. Young, H. A. Graham, E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4, 1023–1026 (1965). [CrossRef]
  3. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  4. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  5. E. Chen, S. Y. Chou, “A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1997). [CrossRef]
  6. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997). [CrossRef]
  7. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1184–1193 (1999). [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Tarrytown, N.Y., 1975).
  9. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  10. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  11. D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  12. A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995). [CrossRef]
  13. M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997). [CrossRef]
  14. M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000). [CrossRef]
  15. Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995). [CrossRef]
  16. O. M. Mendez, M. Cahilhac, R. Petit, “Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen,” J. Opt. Soc. Am. 73, 328–331 (1983). [CrossRef]
  17. S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993). [CrossRef]
  18. T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994). [CrossRef]
  19. Y.-K. Kok, “General solution to the multiple-metallic-grooves scattering problem: the fast-polarization case,” Appl. Opt. 32, 2573–2581 (1993). [CrossRef] [PubMed]
  20. B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994). [CrossRef]
  21. H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited