OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4759–4769

Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-µm wavelength for space-based and airborne lidars

Vandana Srivastava, Jeffry Rothermel, Antony D. Clarke, James D. Spinhirne, Robert T. Menzies, Dean R. Cutten, Maurice A. Jarzembski, David A. Bowdle, and Eugene W. McCaul  »View Author Affiliations


Applied Optics, Vol. 40, Issue 27, pp. 4759-4769 (2001)
http://dx.doi.org/10.1364/AO.40.004759


View Full Text Article

Enhanced HTML    Acrobat PDF (1387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An aerosol microphysics dataset was used to model backscatter in the 0.35–11-µm wavelength range, with the results validated by comparison with measured cw and pulsed lidar backscatter obtained during two NASA-sponsored airborne field experiments. Different atmospheric features were encountered, with aerosol backscatter ranging over 4 orders of magnitude. Modeled conversion functions were used to convert existing lidar backscatter datasets to 2.1 µm. Resulting statistical distribution shows the midtropospheric aerosol backscatter background mode of β2.1 to be between ∼3.0 × 10-10 and ∼1.3 × 10-9 m-1 sr-1, ∼10–20 times higher than that for β9.1; and a β2.1 boundary layer mode of ∼1.0 × 10-7 to ∼1.3 × 10-6 m-1 sr-1, ∼3–5 times higher than β9.1.

© 2001 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: May 25, 2000
Revised Manuscript: April 17, 2001
Published: September 20, 2001

Citation
Vandana Srivastava, Jeffry Rothermel, Antony D. Clarke, James D. Spinhirne, Robert T. Menzies, Dean R. Cutten, Maurice A. Jarzembski, David A. Bowdle, and Eugene W. McCaul, "Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-µm wavelength for space-based and airborne lidars," Appl. Opt. 40, 4759-4769 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-27-4759


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Kavaya, G. D. Emmitt, “The space readiness coherent lidar experiment (SPARCLE) space shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998). [CrossRef]
  2. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  3. J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983). [CrossRef]
  4. J. Rothermel, D. A. Bowdle, J. M. Vaughan, M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989). [CrossRef] [PubMed]
  5. J. Rothermel, D. A. Bowdle, V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996). [CrossRef]
  6. V. Srivastava, A. D. Clarke, M. A. Jarzembski, J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused CW lidar data over Pacific,” J. Geophys. Res. 102, 16605–16617 (1997). [CrossRef]
  7. D. M. Tratt, R. T. Menzies, “Recent climatological trends in atmospheric aerosol backscatter derived from the Jet Propulsion Laboratory multiyear backscatter profile database,” Appl. Opt. 33, 424–430 (1994). [CrossRef] [PubMed]
  8. M. J. Post, “Aerosol backscattering profiles at CO2 wavelengths: the NOAA data base,” Appl. Opt. 23, 2507–2509 (1984). [CrossRef]
  9. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997). [CrossRef] [PubMed]
  10. M. A. Jarzembski, V. Srivastava, J. Rothermel, “Vertical aerosol variability from an airborne focused continuous wave CO2 lidar,” Appl. Opt. 38, 908–915 (1999). [CrossRef]
  11. S. M. Hannon, H. R. Bailey, D. C. Soreide, R. K. Bogne, L. J. Ehernberger, D. A. Bowdle, “Airborne turbulence detection and warning: ACLAIM flight test results,” in Proceedings of the Tenth Biennial Coherent Laser Radar: Technology and Applications, (Universities Space Research Association, Huntsville, Ala., 1999), pp. 20–23.
  12. S. C. Cha, K. P. Chan, D. K. Kellinger, “Tunable 2.1 µm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991). [CrossRef] [PubMed]
  13. R. T. Menzies, D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997). [CrossRef]
  14. D. A. Bowdle, D. E. Fitzjarrald, “The GLObal Backscatter Experiment (GLOBE) program,” in Coherent Laser Radar: Technology and Applications, Vol. 16 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987) pp. 108–111.
  15. A. D. Clarke, J. Porter, “Aerosol size distributions, composition, and CO2 backscatter at Mauna Loa Observatory,” J. Geophys. Res. 96, 5237–5247 (1991). [CrossRef]
  16. A. D. Clarke, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution,” J. Geophys. Res. 98, 20633–20647 (1993). [CrossRef]
  17. D. R. Cutten, P. F. Pueschel, V. Srivastava, D. A. Bowdle, A. D. Clarke, J. Rothermel, R. T. Menzies, J. D. Spinhirne, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9357–9389 (1996). [CrossRef]
  18. D. R. Cutten, J. D. Spinhirne, R. T. Menzies, D. A. Bowdle, V. Srivastava, R. F. Pueschel, A. D. Clarke, J. Rothermel, “Intercomparison of pulsed lidar data with flight level CW lidar data and modeled backscatter from measured aerosol microphysics near Japan and Hawaii,” J. Geophys. Res. 103, 19649–19661 (1998). [CrossRef]
  19. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996). [CrossRef] [PubMed]
  20. M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996). [CrossRef] [PubMed]
  21. V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1 and 2.1 wavelengths,” Appl. Opt. 31, 1904–1906 (1992). [CrossRef] [PubMed]
  22. V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995). [CrossRef]
  23. S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar aerosol backscatter cross sections in the 2.1 µm near infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited