OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4807–4815

Scanning infrared radiometer for measuring the air–sea temperature difference

Joseph A. Shaw, Domenico Cimini, Ed R. Westwater, Yong Han, Heather M. Zorn, and James H. Churnside  »View Author Affiliations


Applied Optics, Vol. 40, Issue 27, pp. 4807-4815 (2001)
http://dx.doi.org/10.1364/AO.40.004807


View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a vertically scanning infrared radiometer for measuring the air–sea temperature difference without disturbing the water skin layer. The radiometer operates with a single wavelength channel that is 1.1 µm wide, centered on 14.2 µm, on the short-wavelength edge of a CO2 atmospheric absorption band. The resulting high atmospheric absorption enables calibration of the horizontal-viewing signal with an in situ air-temperature sensor. The signal at all other scan angles is measured relative to that at the horizontal, providing a differential air–sea temperature measurement that is nearly independent of calibration offsets that can be a problem with independent air- and water-temperature sensors. We show data measured on a ship in the Tropical Western Pacific Ocean during July 1999, which exhibit important discrepancies from in situ data using bulk air- and water-temperature sensors. These discrepancies illustrate important differences between bulk versus skin water temperature.

© 2001 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry

History
Original Manuscript: December 1, 2000
Revised Manuscript: May 21, 2001
Published: September 20, 2001

Citation
Joseph A. Shaw, Domenico Cimini, Ed R. Westwater, Yong Han, Heather M. Zorn, and James H. Churnside, "Scanning infrared radiometer for measuring the air–sea temperature difference," Appl. Opt. 40, 4807-4815 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-27-4807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hurrell, K. E. Trenberth, “Global sea surface temperature analyses: multiple problems and their implications for climate analysis, modeling, and reanalysis,” Bull. Am. Meteorol. Soc. 80, 2661–2678 (1999). [CrossRef]
  2. J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997). [CrossRef] [PubMed]
  3. P. A. Hwang, O. H. Shemdin, “The dependence of sea surface slope on atmospheric stability and swell conditions,” J. Geophys. Res. 93, 13903–13912 (1988). [CrossRef]
  4. M. N. Pospelov, “Surface wind speed retrieval using passive microwave polarimetry: the dependence on atmospheric stability,” IEEE Trans. Geosci. Remote Sens. 34, 1166–1171 (1996). [CrossRef]
  5. W. C. Keller, W. J. Plant, D. E. Weissman, “The dependence of X-band microwave sea return on atmospheric stability and sea state,” J. Geophys. Res. 90, 1019–1029 (1985). [CrossRef]
  6. P. Schluessel, W. J. Emery, H. Grassl, T. Mammen, “On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature,” J. Geophys. Res. 95, 13341–13356 (1990). [CrossRef]
  7. G. A. Wick, W. J. Emery, L. H. Kantha, R. Schluessel, “The behavior of the bulk-skin sea surface temperature difference under varying wind speed and heat flux,” J. Phys. Oceanogr. 26, 1969–1988 (1996). [CrossRef]
  8. C. W. Fairall, E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, G. S. Young, “Cool-skin and warm-layer effects on sea surface temperature,” J. Geophys. Res. 101, 1295–1308 (1996). [CrossRef]
  9. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, O. B. Brown, “The Marine-Atmospheric Emitted Radiance Interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Oceanic Technol. 18, 994–1013 (2001). [CrossRef]
  10. E. D. McAlister, W. McLeish, “A radiometric system for airborne measurement of the total heat flow from the sea,” Appl. Opt. 9, 2697–2705 (1970). [CrossRef] [PubMed]
  11. E. D. McAlister, W. McLeish, “Airborne measurements of the total heat flux from the sea during Bomex,” J. Geophys. Res. 76, 4172–4180 (1971). [CrossRef]
  12. W. McKeown, F. Bretherton, H. L. Huang, W. L. Smith, H. E. Revercomb, “Sounding the skin of water: sensing air–water interface temperature gradients with interferometry,” J. Atmos. Oceanic Technol. 12, 1313–1327 (1995). [CrossRef]
  13. T. C. Mammen, N. von Bosse, “STEP—a temperature profiler for measuring the oceanic thermal boundary layer at the ocean-air interface,” J. Atmos. Oceanic Technol. 7, 312–322 (1990). [CrossRef]
  14. Y. G. Trokhimovski, E. R. Westwater, Y. Han, V. Y. Leuski, “Air and sea surface temperature measurements using a 60-GHz microwave rotating radiometer,” IEEE Trans. Geosci. Remote Sens. 36, 3–15 (1998). [CrossRef]
  15. E. R. Westwater, Y. Han, V. G. Irisov, V. Y. Leuskiy, “Sea–air and boundary layer temperatures measured by a scanning 5-mm wavelength radiometer: recent results,” Radio Sci. 33, 291–302 (1998). [CrossRef]
  16. E. R. Westwater, Y. Han, V. G. Irisov, V. Y. Leuskiy, E. N. Kadygrov, S. A. Viazankin, “Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: comparison experiments,” J. Atmos. Oceanic Technol. 16, 805–818 (1999). [CrossRef]
  17. J. A. Shaw, D. Cimini, E. R. Westwater, Y. Han, H. Zorn, J. H. Churnside, “Air–sea temperature differences measured with scanning radiometers during Nauru99,” in Proceedings of the International Geoscience and Remote Sensing Symposium 2000 (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 111–113.
  18. M. J. Post, C. W. Fairall, “Early results from the Nauru99 campaign on NOAA ship Ronald H. Brown,” in Proceedings of the International Geoscience and Remote Sensing Symposium 2000 (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 1151–1153.
  19. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  20. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1982), p. 110.
  21. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  22. J. A. Shaw, H. M. Zorn, J. J. Bates, J. H. Churnside, “Observations of downwelling infrared spectral radiance at Mauna Loa, Hawaii during the 1997–1998 ENSO event,” Geophys. Res. Lett. 26, 1727–1730 (1999). [CrossRef]
  23. Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997). [CrossRef]
  24. C. Cox, W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  25. J. A. Shaw, C. Marston, “Polarized infrared emissivity for a rough water surface,” Opt. Exp. 7, 375–380 (2000), http://www.opticsexpress.org/oearchive/pdf/25342.pdf . [CrossRef]
  26. J. A. Shaw, D. Cimini, E. R. Westwater, Y. Han, “Air-sea temperatures measured with scanning microwave and infrared radiometers in Nauru99,” in Proceedings of the Eleventh ARM Science Team Meeting (U.S. Department of Energy, Washington, D.C., 2001), http://www.arm.gov/docs/documents/technical/conf_0103/index.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited