OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4831–4835

Femtosecond Ti:sapphire oscillator electro-optically cavity dumped at 50 kHz

Nathan W. Rimington, Adrian Cornea, Aaron J. Van Tassle, Jeffrey Santoro, and W. Andreas Schroeder  »View Author Affiliations

Applied Optics, Vol. 40, Issue 27, pp. 4831-4835 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (98 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Use of a transverse KD*P Pockels cell and novel low-loss sapphire Rochon polarizer to cavity dump a hard-aperture, Kerr-lens mode-locked, Ti:sapphire oscillator is demonstrated. High-quality 90-fs pulses with energies of ∼50 nJ at repetition rates of up to 50 kHz were obtained.

© 2001 Optical Society of America

OCIS Codes
(140.3590) Lasers and laser optics : Lasers, titanium
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology

Original Manuscript: November 6, 2000
Revised Manuscript: May 23, 2001
Published: September 20, 2001

Nathan W. Rimington, Adrian Cornea, Aaron J. Van Tassle, Jeffrey Santoro, and W. Andreas Schroeder, "Femtosecond Ti:sapphire oscillator electro-optically cavity dumped at 50 kHz," Appl. Opt. 40, 4831-4835 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef] [PubMed]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999). [CrossRef]
  3. R. Ell, U. Morgner, F. X. Kärtner, J. F. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001). [CrossRef]
  4. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996). [CrossRef] [PubMed]
  5. T. R. Nelson, W. A. Schroeder, C. K. Rhodes, F. G. Omenetto, J. W. Longworth, “Short-pulse amplification at 745 nm in Ti:sapphire with a continuously tunable regenerative amplifier,” Appl. Opt. 36, 7752–7755 (1997). [CrossRef]
  6. T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17, 1009–1011 (1992). [CrossRef] [PubMed]
  7. M. Ramaswamy, M. Ulman, J. Paye, J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,” Opt. Lett. 18, 1822–1824 (1993). [CrossRef] [PubMed]
  8. M. S. Pshenichnikov, W. De Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994). [CrossRef] [PubMed]
  9. G. N. Gibson, R. Klank, F. Gibson, B. E. Bouma, “Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator,” Opt. Lett. 21, 1055–1057 (1996). [CrossRef] [PubMed]
  10. S. Schnieder, A. Stockmann, W. Schüsslbauer, “Self-starting mode-locked cavity-dumped femtosecond Ti:sapphire laser employing a semiconductor saturable absorber mirror,” Opt. Exp. 6, 220–226 (2000). [CrossRef]
  11. Y.-H. Liau, A. N. Unterreiner, D. C. Arnett, N. F. Scherer, “Femtosecond-pulse cavity-dumped solid-state oscillator design and application to ultrafast microscopy,” Appl. Opt. 38, 7386–7392 (1999). [CrossRef]
  12. N. W. Rimington, A. Cornea, J. Santoro, T. R. Nelson, W. A. Schroeder, “A multi-kilohertz electro-optic switch for ultrafast laser systems,” in Conference on Lasers and Electro-Optics, Vol. 39 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 121–122.
  13. E. Krüger, “High-repetition-rate electro-optic cavity dumping,” Rev. Sci. Instrum. 66, 961–967 (1995). [CrossRef]
  14. A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 14.
  15. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992). [CrossRef]
  16. M. Mehendale, T. R. Nelson, F. R. Omenetto, W. A. Schroeder, “Thermal effects in laser pumped Kerr-lens modelocked Ti:sapphire lasers,” Opt. Commun. 136, 150–159 (1997). [CrossRef]
  17. K. W. DeLong, R. Trebino, D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994). [CrossRef]
  18. R. L. Fork, C. H. B. Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 7, 483–485 (1987). [CrossRef]
  19. R. E. Sherriff, “Analytic expressions for group-delay dispersion and cubic dispersion in arbitray prism sequences,” J. Opt. Soc. Am. B 15, 1224–1230 (1998). [CrossRef]
  20. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993). [CrossRef] [PubMed]
  21. R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, “Chirped multiplayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited