OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4836–4848

Tunable Single-Mode Operation of a Pulsed Optical Parametric Oscillator Pumped by a Multimode Laser

Yabai He and Brian J. Orr  »View Author Affiliations

Applied Optics, Vol. 40, Issue 27, pp. 4836-4848 (2001)

View Full Text Article

Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-quality single-longitudinal-mode (SLM) tunable signal radiation is generated by a pulsed optical parametric oscillator (OPO) pumped by a compact, inexpensive multimode laser. The OPO is based on periodically poled lithium niobate (PPLN) in a ring cavity that is injection seeded at its resonated signal wavelength by a single-mode tunable diode laser. Accurate control of the OPO cavity length and crystal temperature ensures a continuously tunable SLM signal output frequency range of >7.5 THz (>250 cm−1); the corresponding idler output remains multimode. High-resolution molecular spectra are recorded to verify OPO performance at wavelengths of ~1.55 μm. The observed signal optical bandwidth of ≤120 MHz (≤0.0040 cm−1) compares favorably with that of a more elaborate PPLN OPO system pumped by a pulsed single-mode laser.

© 2001 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

Yabai He and Brian J. Orr, "Tunable Single-Mode Operation of a Pulsed Optical Parametric Oscillator Pumped by a Multimode Laser," Appl. Opt. 40, 4836-4848 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. L. Byer, “Parametric oscillators,” in Laser Spectroscopy, R. G. Brewer and A. Mooradian, eds. (Plenum, New York, 1973), pp. 77–101.
  2. R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: a Treatise, Vol. 1, Nonlinear Optics, Part B, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.
  3. R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, Y.-R. Shen, ed. (Springer-Verlag, New York, 1977), pp. 81–137.
  4. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
  5. A. Fix, T. Schröder, and R. Wallenstein, “The optical parametric oscillators of beta-bariumborate and lithiumborate: new sources of powerful tunable laser radiation in the ultraviolet, visible, and near infrared,” Laser Optoelectron. 23 (3), 106–110 (1991).
  6. C. L. Tang, W. R. Bosenberg, T. Ukachi, R. J. Lane, and L. K. Cheng, “Optical parametric oscillators,” Proc. IEEE 80, 365–374 (1992).
  7. B. J. Orr, M. J. Johnson, and J. G. Haub, “Spectroscopic applications of pulsed tunable optical parametric oscillators,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), Chap. 2, pp. 11–82.
  8. N. P. Barnes, “Optical parametric oscillators,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, San Diego, Calif., 1995), Chap. 7, pp. 293–348.
  9. V. G. Dmitriev, G. G. Gurzayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, New York, 1997).
  10. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996).
  11. W. R. Bosenberg and D. R. Guyer, “Broadly tunable, single-frequency optical parametric frequency-conversion system,” J. Opt. Soc. Am. B 10, 1716–1722 (1993).
  12. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
  13. J. G. Haub, R. M. Hentschel, M. J. Johnson, and B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” J. Opt. Soc. Am. B 12, 2128–2141 (1995).
  14. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
  15. J. M. Boon-Engering, W. E. van der Veer, J. W. Gerritsen, and W. Hogervorst, “Bandwidth studies of an injection-seeded β-barium borate optical parametric oscillator,” Opt. Lett. 20, 380–382 (1995).
  16. D. F. Plusquellic, O. Votava, and D. J. Nesbitt, “Absolute frequency stabilization of an injection-seeded optical parametric oscillator,” Appl. Opt. 35, 1464–1472 (1996).
  17. O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, and D. J. Nesbitt, “High-resolution vibrational overtone studies of HOD and H2O with single-mode, injection-seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
  18. A. Borsutzky, “Frequency control of pulsed optical parametric oscillators,” Quantum Semiclass. Opt. 9, 191–207 (1997).
  19. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
  20. G. W. Baxter, H.-D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B 66, 653–657 (1998).
  21. G. W. Baxter, Y. He, and B. J. Orr, “A pulsed optical parametric oscillator system, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 753–756 (1998).
  22. Y. He, G. W. Baxter, and B. J. Orr, “Locking the cavity of a pulsed periodically poled lithium niobate optical parametric oscillator to the wavelength of a continuous-wave injection seeder by an ‘intensity-dip’ method,” Rev. Sci. Instrum. 70, 3203–3213 (1998).
  23. G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
  24. G. W. Baxter, M. A. Payne, B. D. W. Austin, C. A. Halloway, J. G. Haub, Y. He, A. P. Milce, J. F. Nibler, and B. J. Orr, “Spectroscopic diagnostics of chemical processes: applications of tunable optical parametric oscillators,” Appl. Phys. B 71, 651–663 (2000).
  25. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  26. A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “Efficient all-solid-state tunable source based on a passively Q-switched high-power Nd:YAG laser,” Appl. Phys. B 65, 303–305 (1997).
  27. C.-S. Yu and A. H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator,” J. Opt. Soc. Am. B 16, 2233–2238 (1999).
  28. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
  29. H. Karlsson, M. Olson, G. Arvidsson, F. Laurell, U. Bäder, A. Borsutzky, R. Wallenstein, S. Wickström, and M. Gustafsson, “Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4,” Opt. Lett. 24, 330–332 (1999).
  30. R. S. Conroy, C. F. Rae, M. H. Dunn, B. D. Sinclair, and J. M. Ley, “Compact, actively Q-switched optical parametric oscillator,” Opt. Lett. 24, 1614–1616 (1999).
  31. G. W. Baxter, P. Schlup, and I. T. McKinnie, “Efficient, single-frequency, high-repetition-rate, PPLN OPO pumped by a prelase Q-switched diode-pumped Nd:YAG laser,” Appl. Phys. B 70, 301–304 (2000).
  32. Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chinese Chem. Soc. (to be published).
  33. S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
  34. G. W. Baxter, “Injection-seeded optical parametric oscillators for spectroscopy,” PhD dissertation (Macquarie University, Sydney, Australia, 1998).
  35. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
  36. K. W. Busch and M. A. Busch, ed., Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, ACS Symposium Series 720 (Oxford University, New York, 1999).
  37. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
  38. J. J. Scherer, D. Voelkel, and D. J. Rakestraw, “Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) in low pressure flames,” Appl. Phys. B 64, 699–705 (1997).
  39. D. Voelkel, Yu. L. Chuzavkov, J. Marquez, S. N. Orlov, Yu. N. Polivanov, V. V. Smirnov, and F. Huisken, “Infrared degenerate four-wave mixing and resonance-enhanced stimulated Raman scattering in molecular gases and free jets,” Appl. Phys. B 65, 93–99 (1997).
  40. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  41. L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
  42. Y. He and B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
  43. Y. He and B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–217 (2001).
  44. Q. Kou, G. Guelachvili, M. Abboutti Temsamani, and M. Herman, “The absorption spectrum of C2H2 around ν1 + ν3: energy standards in the 1.5-μm region and vibrational clustering,” Can. J. Phys. 72, 1241–1250 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited