OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4852–4862

Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

Laurel E. Kirkland, Kenneth C. Herr, and John W. Salisbury  »View Author Affiliations


Applied Optics, Vol. 40, Issue 27, pp. 4852-4862 (2001)
http://dx.doi.org/10.1364/AO.40.004852


View Full Text Article

Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer’s sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample’s surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6–13-μm wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at ~6.5 μm and a less intense, sharper band at ~11.25 μm. Although the 6.5-μm band is stronger and broader in laboratory-measured spectra, the 11.25-μm band will cause a more detectable feature in TES spectra.

© 2001 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6490) Spectroscopy : Spectroscopy, surface

Citation
Laurel E. Kirkland, Kenneth C. Herr, and John W. Salisbury, "Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials," Appl. Opt. 40, 4852-4862 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-27-4852


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. See, for example, D. E. Sabol, J. B. Adams, and M. O. Smith, “Quantitative subpixel detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
  2. See, for example, P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
  3. See, for example, J. B. Adams, M. O. Smith, and A. R. Gillespie, “Imaging spectroscopy: interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters and P. Englert eds. (Cambridge U. Press, New York, 1993), Chap. 7.
  4. W. K. Pratt, Digital Imaging Processing (Wiley, New York, 1978), Chap. 19.
  5. W. H. Farrand and J. C. Harsanyi, “Discrimination of poorly exposed lithologies in imaging spectrometer data,” J. Geophys. Res. 100, 1565–1578 (1995).
  6. J. F. Mustard and J. M. Sunshine, “Spectral analysis for Earth science: investigations using remote sensing data,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed., A. N. Rencz, ed. (Wiley, New York, 1999), Vol. 3, Chap. 5.
  7. G. R. Hunt and L. M. Logan, “Variation of single particle mid-infrared emission spectrum with particle size,” Appl. Opt. 11, 142–147 (1972).
  8. J. L. Thomson and J. W. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 μm),” Remote Sens. Environ. 45, 1–13 (1993).
  9. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
  10. J. W. Salisbury and A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
  11. R. K. Vincent and F. Thomson, “Spectral composition imaging of silicate rocks,” J. Geophys. Res. 77, 2465–2472 (1972).
  12. A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation stretch,” Remote Sens. Environ. 20, 209–235 (1986).
  13. A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
  14. H. Shipman and J. B. Adams, “Detectability of minerals on desert alluvial fans using reflectance spectra,” J. Geophys. Res. 92, 10391–10402 (1987).
  15. A. R. Gillespie, “Spectral mixture analysis of multispectral thermal infrared images,” Remote Sens. Environ. 42, 137–145 (1992).
  16. T. D. Rubin, “Spectral mapping with imaging spectrometers,” Photogramm. Eng. Remote Sens. 59, 215–220 (1993).
  17. A review of references is given in M. L. Polak, J. L. Hall, and K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995).
  18. A review of references is given in D. F. Flanigan, “A short history of remote sensing of chemical agents,” in Electro-Optical Technology for Remote Chemical Detection and Identification, M. Fallahi and E. Howden, eds., Proc. SPIE 2763, 2–17 (1996).
  19. An application to Mars is given in J. M. McAfee, “Interpretation of the infrared spectra of the Martian atmosphere obtained by the Mariner 6 and 7 Infrared Spectrometers,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1974).
  20. P. R. Christensen, D. L. Anderson, S. C. Chase, R. N. Clark, H. H. Kieffer, M. C. Malin, J. C. Pearl, J. Carpenter, N. Bandiera, F. G. Brown, and S. Silverman, “Thermal emission spectrometer experiment: Mars Observer mission,” J. Geophys. Res. 97, 7719–7734 (1992).
  21. Hanel et al. used 7.81 μm. See R. A. Hanel, B. J. Conrath, D. E. Jennings, and R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), p. 345.
  22. Kirkland and Herr used 7.75 μm. See L. E. Kirkland and K. C. Herr, “Spectral anomalies in the 11 and 12 μm region from the Mariner Mars 7 Infrared Spectrometer,” J. Geophys. Res. 105, 22507–22515 (2000).
  23. Smith et al. used 7.6–7.8 μm. See M. D. Smith, J. L. Bandfield, and P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
  24. C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), p. 145.
  25. J. R. Aronson, A. G. Emslie, R. V. Allen, and H. G. McLinden, “Studies of the middle- and far-infrared spectra of mineral surfaces for application in remote compositional mapping of the moon and planets,” J. Geophys. Res. 72, 687–703 (1967).
  26. C. S. Williams and O. A. Becklund, Optics: A Short Course for Engineers (Krieger, Malabar, Fla., 1984), pp. 58–63.
  27. J. Fraden, AIP Handbook of Modern Sensors (American Institute of Physics, New York, 1993), p. 136.
  28. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).
  29. P. R. Christensen, “Calibration report for the Thermal Emission Spectrometer (TES) for the Mars Global Surveyor mission,” Jet Propulsion Laboratory Doc. D-19020, microfiche file 741–314 (Jet Propulsion Laboratory, Pasadena, Calif., 1998).
  30. J. D. Bowman, E. A. Guiness, S. Slavney, and R. E. Arvidson, “Mars Global Surveyor Thermal Emission Spectrometer time sequential data record standard product,” Planetary Data System archive of TES data (NASA Planetary Data System Geosciences Node, Washington University, St. Louis, Mo., 1999).
  31. J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, and J. W. Skinner, “LWIR/MWIR Imaging Hyperspectral Sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. Descour and J. Mooney, eds., Proc. SPIE 2819, 102–107 (1996).
  32. “Thermal Emission Spectrometer (TES) software specification,” JPL Doc. 642–441 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), Vol. 5.
  33. A. S. Wexler, “Integrated intensities of absorption bands in infrared spectroscopy,” Appl. Spectrosc. Rev. 1, 29–98 (1967).
  34. L. E. Kirkland, K. C. Herr, E. R. Keim, J. W. Salisbury, and J. A. Hackwell, “A field study of thermal infrared spectra of carbonates, with implications for studies of Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1876.
  35. L. E. Kirkland, K. C. Herr, P. M. Adams, J. W. Salisbury, and A. Treiman, “A laboratory study of weathered carbonates, with implications for the infrared remote sensing of carbonates on Mars,” in the 31st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, Tex., 2000), abstract 1915.
  36. J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchhoff’s law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
  37. R. N. Clark and T. D. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89, 6329–6340 (1984).
  38. P. M. Adams, The Aerospace Corporation, 2350 E. El Segundo Blvd., El Segundo, Calif. (personal communication, 2000).
  39. F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California,” Remote Sens. Environ. 24, 31–51 (1988).
  40. J. D. Ingle and S. T. Crouch, Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), pp. 172–174.
  41. J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997), pp. 191–231.
  42. M. D. Smith, J. L. Bandfield, and P. R. Christensen, “Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) studies,” J. Geophys. Res. 105, 9589–9607 (2000).
  43. R. A. Hanel, B. J. Conrath, D. E. Jennings, and R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, New York, 1992), pp. 256–274.
  44. R. Beer, Remote Sensing by Fourier Transform Spectrometry, Vol. 120 in Chemical Analysis (Wiley, New York, 1992), pp. 55–100.
  45. Ref. 41, pp. 172–180.
  46. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm window,” Remote Sens. Environ. 42, 83–106 (1992).
  47. See, for example, P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, and M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998).
  48. See, for example, P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, and R. N. Clark, “Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,” J. Geophys. Res. 105, 9609–9621 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited