OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4875–4884

Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars

Chiao-Yao She  »View Author Affiliations

Applied Optics, Vol. 40, Issue 27, pp. 4875-4884 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.

© 2001 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(290.3770) Scattering : Long-wave scattering
(290.5840) Scattering : Scattering, molecules
(290.5870) Scattering : Scattering, Rayleigh

Original Manuscript: October 13, 2000
Revised Manuscript: May 3, 2001
Published: September 20, 2001

Chiao-Yao She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Cabannes, “Un nouveau ph’enom’ene d’optique: le battements qui se produisent lorsque des mol’ecules anisotropes en rotation et vibration diffusent de la lumi’ere visible ou ultraviolette,” C. R. Acad. Sci. 186, 1201–1202 (1928).
  2. J. Cabannes, Y. Rocard, “La Th’eorie ’electromagn’etique de Maxell-Lorentz et la diffusion mol’eculaire de la lumi’ere,” J. Phys. Rad. 10, (6) 52–71 (1929). [CrossRef]
  3. A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 78, 565–568 (1980). [CrossRef]
  4. A. T. Young, “Rayleigh scattering,” Phys. Today42–48 (January1982).
  5. I. L. Feblinskii, Molecular Scattering of Light (Plenum, New York, 1968). [CrossRef]
  6. H. Rosen, P. Robrish, O. Chamberlain, “Remote detection of pollutants using resonance Raman scattering,” Appl. Opt. 14, 2703–2706 (1975). [CrossRef] [PubMed]
  7. H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 153–236. [CrossRef]
  8. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  9. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990). [CrossRef]
  10. H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994). [CrossRef] [PubMed]
  11. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983), Chap. 8.
  12. G. Placzek, Handbuch der Radiologie, Vol. 6, Part 2, E. Marx, ed. (Akadecmischer Verlag, Leipzig, 1934).
  13. R. Gaufres, S. Sportouch, “The Placzek–Teller coefficients bJ′,KJ,K for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971). [CrossRef]
  14. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  15. L. V. King, “On the complex anisotropic molecule in relation to the dispersion and scattering of light,” Proc. R. Soc. London A 104, 333–357 (1923). [CrossRef]
  16. N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. London Sect. A 295, 334–349 (1966). [CrossRef]
  17. Shardanand, A. D. Prasad Rao, “Absolute Rayleigh–scattering cross sections of gases and freons of stratospheric interest in the visible and ultraviolet regions,” NASA TN D-8442 (March1977).
  18. R. B. Miles, D. M. Nosenchuck, “Three-dimensional quantitative flow diagnostics,” in Lecture Notes in Engineering: Advances in Fluid Dynamics Measurement, (Springer-Verlag, Berlin, 1989), pp. 33–107. [CrossRef]
  19. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984). [CrossRef]
  20. H. W. Schrötter, H. W. Köckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, Topics in Current Applied Physics, A. Weber, ed. (Springer-Verlag, Berlin, 1979), p. 123.
  21. J. W. Hair, L. M. Caldwell, D. A. Krueger, C.-Y. She, “High spectral resolution lidar with iodine vapor filters: measurement of atmospheric state and aerosol profiles,” Appl. Opt. (to be published).
  22. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 8.
  23. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).
  24. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 369.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited