OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 27 — Sep. 20, 2001
  • pp: 4894–4903

Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases

Tetsuya Aizawa  »View Author Affiliations

Applied Optics, Vol. 40, Issue 27, pp. 4894-4903 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The in situ quantitative profiles of temperature and OH radical concentration in a postflame region of methane–air premixed counterflow flames were measured by wavelength modulation spectroscopy with a 1.5-µm external cavity diode laser. The second harmonic (2f) signal was generated from absorption by overtone vibrational–rotational transitions of OH: the Π3/2 (v′, v″) = (2, 0) P11.5e (ν0 = 6421.35 cm-1) or the Π3/2 (v′, v″) = (3, 1) P5.5f (ν0 = 6434.61 cm-1) transitions. The absorption occurred in the postflame region between methane–air premixed twin flames stabilized in a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The temperature and OH concentration profiles at an equivalence ratio of ϕ = 0.85 were determined by least-squares fitting of theoretical 2f line shapes to the experimental counterparts and by calculation of the ratio of the line intensities of the two different OH transitions (two-line thermometry). The measured temperature and OH concentration profiles were cross checked by Rayleigh scattering thermometry, thermocouple measurements, and two-dimensional numerical prediction of premixed combustion by use of a detailed chemical kinetic mechanism. The measurements and the prediction showed reasonable agreement.

© 2001 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

Original Manuscript: September 12, 2000
Revised Manuscript: April 2, 2001
Published: September 20, 2001

Tetsuya Aizawa, "Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases," Appl. Opt. 40, 4894-4903 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Gustafsson, G. Somesfalean, J. Alnis, S. R. Svanberg, “Frequency-modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000). [CrossRef]
  2. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  3. M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996). [CrossRef] [PubMed]
  4. J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995). [CrossRef] [PubMed]
  5. M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996). [CrossRef]
  6. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996). [CrossRef]
  7. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in situ combustion measurements of CO2, H2O, and temperature,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 95–101.
  8. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999). [CrossRef]
  9. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997). [CrossRef]
  10. D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute (University of Southern California, Los Angeles, Calif., 1996), paper 96F-084.
  11. D. R. Crosley, “The measurement of OH and HO2 in the atmosphere,” J. Atmos. Sci. 52, 3299–3314 (1995). [CrossRef]
  12. T. Aizawa, T. Kamimoto, T. Tamaru, “Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser,” Appl. Opt. 38, 1733–1741 (1999). [CrossRef]
  13. A. Goldman, W. G. Schoenfeld, D. Goorvitch, C. Chackerian, H. Dothe, F. Mélen, M. C. Abrams, J. E. A. Selby, “Updated line parameters for OH X2Π–X2Π (v″, v′) transitions,” J. Quant. Spectrosc. Radiat. Transfer 59, 435–469 (1998).
  14. A. Goldman (goldman@acd.ucar.edu), Department of Physics and Astronomy, University of Denver, Denver, Colo. 80208 (personal communication, 2000).
  15. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  16. A. Goldman, “Line parameters for the atmospheric band system of OH,” Appl. Opt. 21, 2100–2101 (1982). [CrossRef] [PubMed]
  17. A. Goldman, R. R. Gamache, A. Perrin, J.-M. Flaud, C. P. Rinsland, L. S. Rothman, “HITRAN partition functions and weighted transition-moments squared,” J. Quant. Spectrosc. Radiat. Transfer 66, 455–486 (2000). [CrossRef]
  18. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  19. G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure Series (Van Nostrand, New York, 1950).
  20. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  21. H. Tsuji, “Counterflow diffusion flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982). [CrossRef]
  22. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  23. K. Müller-Dethlefs, F. J. Weinberg, “Burning velocity measurement based on laser Rayleigh scattering,” in Proceedings of the Seventeenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1979), pp. 985–992. [CrossRef]
  24. R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Proceedings of the Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), pp. 1489–1499. [CrossRef]
  25. S. Rajan, J. R. Smith, G. D. Rambach, “Internal structure of a turbulent premixed flame using Rayleigh scattering,” Combust. Flame 57, 95–107 (1984). [CrossRef]
  26. D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane–hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986). [CrossRef]
  27. R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, oppdif: a program for computing opposed-flow diffusion flames, chemkin Collection, Release 3.5 (Reaction Design, Inc., San Diego, Calif., 1999).
  28. R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed flow, premixed methane–air flames,” in Proceedings of the Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1479–1494.
  29. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. Lissianski, Z. Qin, GRI-Mech 3.0: A chemical reaction mechanism of natural gas flames and ignition, http://www.me.berkeley.edu/gri_mech/ .
  30. H. Tsuji, I. Yamaoka, “Structure analysis of counterflow diffusion flames in the forward stagnation region of a porous cylinder,” in Proceedings of the Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1971), pp. 723–731. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited