OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 28 — Oct. 1, 2001
  • pp: 4921–4932

Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics

Anthony D. Turner, James J. Bock, Jeffrey W. Beeman, Jason Glenn, Peter C. Hargrave, Viktor V. Hristov, Hien T. Nguyen, Faiz Rahman, Srinivasan Sethuraman, and Adam L. Woodcraft  »View Author Affiliations

Applied Optics, Vol. 40, Issue 28, pp. 4921-4932 (2001)

View Full Text Article

Acrobat PDF (405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-μm photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 × 10<sup>−17</sup> W/√Hz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45–0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope.

© 2001 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.3060) Detectors : Infrared

Anthony D. Turner, James J. Bock, Jeffrey W. Beeman, Jason Glenn, Peter C. Hargrave, Viktor V. Hristov, Hien T. Nguyen, Faiz Rahman, Srinivasan Sethuraman, and Adam L. Woodcraft, "Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics," Appl. Opt. 40, 4921-4932 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
  2. M. J. Griffin, B. M. Swinyard, and L. Vigroux, “The SPIRE instrument for FIRST,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge and P. Jakobsen, eds., Proc. SPIE 4013, 184–195 (2000).
  3. P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.-L. Tissot, “New technological development for far-infrared bolometer arrays,” in Infrared Technology and Applications XXV, B. F. Andresen and M. S. Scholl, eds., Proc. SPIE 3698, 284–290 (1999).
  4. D. J. Benford, C. A. Allen, J. A. Chervenak, M. M. Freund, A. S. Kutyrev, S. H. Moseley, R. A. Shafer, J. G. Staguhn, E. N. Grossman, G. C. Hilton, K. D. Irwin, J. M. Martinis, S. W. Nam, and O. D. Reintsema, “Multiplexed readout of superconducting bolometers,” Int. J. Infrared Millim. Waves 21, 1909–1916 (2000).
  5. P. D. Mauskopf, J. J. Bock, H. Del Castillo, W. H. Holzapfel, and A. E. Lange, “Composite infrared bolometers with Si3N4 micromesh absorbers,” Appl. Opt. 36, 765–771 (1997).
  6. J. C. Mather, “Bolometer noise—nonequilibrium theory,” Appl. Opt. 21, 1125–1129 (1982).
  7. J. C. Mather, “Bolometers: ultimate sensitivity, optimization, and amplifier coupling,” Appl. Opt. 23, 584–588 (1984).
  8. F. Piacentini, P. A. R. Ade, R. Bathia, J. J. Bock, A. Boscaleri, P. Cardoni, B. P. Crill, P. de Bernardis, H. Del Castillo, G. de Troia, P. Farese, M. Giacometti, E. F. Hivon, V. V. Hristov, A. Iacoangeli, A. E. Lange, S. Masi, P. D. Mauskopf, L. Miglio, C. B. Netterfield, P. Palangio, E. Pascale, A. Raccanelli, S. Rao, G. Romeo, J. Ruhl, and F. Scaramuzzi, “Boomerang: a balloon-borne millimeter wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background” (to be published).
  9. A. T. Lee, P. Ade, A. Balbi, J. Bock, J. Borrill, A. Boscaleri, B. P. Crill, P. de Bernardis, H. Del Castillo, P. Ferreira, K. Ganga, S. Hanany, V. Hrsitov, A. H. Jaffe, A. E. Lange, P. Mauskopf, C. B. Netterfield, S. Oh, E. Pascale, B. Rabii, P. L. Richards, J. Ruhl, G. F. Smoot, and C. D. Winant, “MAXIMA: an experiment to measure temperature anisotropy in the cosmic microwave background,” 3 K Cosmology: EC-TMR Conference, L. Maiani, F. Melchiorri, and N. Vittorio eds., Rep. 476 (American Institute of Physics, College Park, Md., 1999), p. 224.
  10. M. S. Kowitt, E. S. Cheng, D. A. Cottingham, K. Farooqui, D. J. Fixen, K. Ganga, C. A. Inman, S. S. Meyer, L. A. Page, L. Piccirillo, J. L. Puchalla, J. Ruhl, R. K. Schaefer, R. F. Silverberg, P. T. Timbie, G. Wilson, and J. W. Zhou, “The MSAM/TopHat program of anisotropy measurements,” Astrophys. Lett. Commun. 32, 273–281 (1995).
  11. S-F. Lee, J. M. Gildemeister, W. Holmes, A. T. Lee, and P. L. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK,” Appl. Opt. 37, 3391–3397 (1998).
  12. K. D. Irwin, “An application of electrothermal feedback for high-resolution cryogenic particle detection,” Appl. Phys. Lett. 65, 1998–2000 (1995).
  13. A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
  14. G. Hoffer, “Superconducting junction bolometers,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1980).
  15. J. J. Bock, H. M. Del Castillo, A. D. Turner, J. W. Beeman, A. E. Lange, and P. D. Mauskopf, “Infrared bolometers with silicon nitride micromesh absorbers,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th Embedded Systems Laboratory, ESA SP-388 (European Space Agency, Munich, Germany, 1996).
  16. J. J. Bock, H. G. LeDuc, A. E. Lange, and J. Zmuidzinas, “A monolithic bolometer array suitable for FIRST,” in The Far Infrared and Submillimetre Universe, Proceedings of the ESA Symposium, ESA SP-401 (European Space Agency, Munich, Germany, 1997).
  17. W. Holmes, J. M. Gildemeister, P. L. Richards, and V. Kotsubo, “Measurements of thermal transport in low stress silicon nitride films,” Appl. Phys. Lett. 72, 2250–2252 (1998).
  18. J. Glenn, J. Bock, P. D. Mauskopf, and A. T. Lee, “Numerical optimization of integrating cavities for diffraction-limited millimeter-wave bolometer arrays,” Appl. Opt. (to be published).
  19. M. J. Griffin (Cardiff University, CF10 3XQ, Wales, UK), J. J. Bock, and W. K. Gear (Cardiff University, CF10 3XQ, Wales, UK) are preparing a manuscript to be called “The relative performance of filled array and feedhorn array architectures for far-infrared and sub-millimeter cameras.”
  20. E. E. Haller, “Physics and design of advanced IR bolometers and photoconductors,” Infrared Phys. 25, 257–266 (1985).
  21. Surface Technology Systems Ltd., Newport, Wales, UK.
  22. P. C. Hargrave, B. Maffei, R. Hermoso, G. Gannaway, M. J. Griffin, P. A. R. Ade, C. V. Haynes, C. E. Tucker, S. H. Moseley, J. J. Bock, and L. Rodriguez, “A low-background He-3 bolometer array test facility and its use in evaluating prototype arrays for FIRST-SPIRE,” Nucl. Instrum. Methods Phys. Res. A 444, 427–431 (2000).
  23. Spectrum Control Inc., Fairview, Pa.
  24. R. J. Corruccini and J. J. Gneiwek, “Specific heat and enthalpy of some solids at low temperatures,” Natl. Bur. Stand. (U.S.) Mongr. 21 (National Bureau of Standards, Washington, D.C., 1960).
  25. P. H. Keesom and G. Seidel, “Specific heat of germanium and silicon at low temperatures,” Phys. Rev. 133, 33–39 (1959).
  26. V. I. Koshchenko and Y. Kh. Grinberg, “Thermodynamic properties of Si3N4,” Neorg. Mater. 18, 1064–1066 (1982).
  27. N. Coron, G. Artzner, P. DeMarcillac, H. H. Stroke, A. Benoit, F. Amoudry, H. L. Ravn, B. Jonson, J. P. Torre, O. Testard, G. Dambler, J. Leblanc, G. Jegoudez, and J. P. Lepeltier, “Thermal spectrometry of particles and gamma rays with cooled bolometers of mass up to 25 grams,” in Superconducting and Low Temperature Particle Detectors, G. Waysand and G. Chardin, eds. (Elsevier, Amsterdam, 1989), p. 115.
  28. P. Stefanyi, C. C. Zammit, R. Rentzsch, P. Fozooni, J. Saunders, and M. T. Lea, “Development of a Si bolometer for dark matter detection,” Physica B 194, 161–162 (1994).
  29. P. deMoor, J. Wouters, F. Vanovermeire, N. Coron, J. Camps, P. deMarcillac, G. Jegoudez, J. Leblanc, P. Schuurmans, N. Severijns, W. Vanderpoorten, and L. Vanneste, “Enhanced performance of a bolometric detector at mK temperatures in high magnetic fields,” J. Low Temp. Phys. 93, 295–300 (1993).
  30. J. J. Bock and A. E. Lange, “Performance of a low-pass filter for far-infrared wavelengths,” Appl. Opt. 34, 7254–7257 (1995).
  31. S. E. Church, B. Philhour, A. E. Lange, P. A. R. Ade, B. Maffei, R. Nartallo-Garcia, and M. Dragovan, “A compact high-efficiency feed structure for cosmic microwave background astronomy at millimeter wavelengths,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th Embedded Systems Laboratory, ESA SP-388 (European Space Agency, Munich, Germany, 1996).
  32. Emerson and Cuming Microwave Products, Inc., Woburn, Mass. 01888.
  33. J. A. Chervenak, K. D. Irwin, E. N. Grossman, J. M. Martinis, C. D. Reintsema, and M. E. Huber, “Superconducting multiplexer for arrays of transition edge sensors,” Appl. Phys. Lett. 74, 4043–4045 (1999).
  34. J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. J. Myers, P. L. Richards, and J. T. Skidmore, “Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors,” Appl. Phys. Lett. 78, 371–373 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited