OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 28 — Oct. 1, 2001
  • pp: 4965–4970

Three-dimensional materials analysis by confocal Raman microspectroscopy

Lothar Kador, Tobias Schittkowski, Markus Bauer, and Yuwei Fan  »View Author Affiliations


Applied Optics, Vol. 40, Issue 28, pp. 4965-4970 (2001)
http://dx.doi.org/10.1364/AO.40.004965


View Full Text Article

Acrobat PDF (3742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two- and three-dimensional spatial analysis of various composite materials was performed with a scanning confocal Raman microspectrometer. Samples include TiO2 microparticles, mixtures of polymers, and the surface of an older Eprom computer chip. In the last case both structural and compositional information was obtained by means of comparing the signal intensity of the Rayleigh line with that of the silicon Raman line at 520 cm−1. The spatial compositions of a pain-relief medicine and a pharmaceutical salt mixture could be visualized from characteristic Raman lines of the components.

© 2001 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(180.1790) Microscopy : Confocal microscopy
(300.6450) Spectroscopy : Spectroscopy, Raman

Citation
Lothar Kador, Tobias Schittkowski, Markus Bauer, and Yuwei Fan, "Three-dimensional materials analysis by confocal Raman microspectroscopy," Appl. Opt. 40, 4965-4970 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-28-4965


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).
  2. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicaud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature (London) 347, 301–303 (1990).
  3. B. Lecourt, F. Capelle, F. Adamietz, A. Malaplate, D. Blaudez, H. Kellay, and J. M. Turlet, “Confocal micro-Raman spectroscopy of black soap films,” J. Chem. Phys. 108, 1284–1289 (1998).
  4. P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar, “Micro-Raman investigation of stress variations in lead titanate films on sapphire,” J. Appl. Phys. 86, 828–834 (1999).
  5. S. Périchon, V. Lysenko, B. Remaki, D. Barbier, and B. Champagnon, “Measurement of porous silicon thermal conductivity by micro-Raman scattering,” J. Appl. Phys. 86, 4700–4702 (1999).
  6. E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, and Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys. 86, 6078–6083 (1999).
  7. C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
  8. C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
  9. N. M. Sijtsema, S. D. Wouters, C. J. de Grauw, C. Otto, and J. Greve, “Confocal direct imaging Raman microscope: design and applications in biology,” Appl. Spectrosc. 52, 348–355 (1998).
  10. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectroscopy,” J. Phys. Chem. B 102, 5754–5765 (1998).
  11. F. Meinardi, S. Quilici, A. Borghesi, and G. Artioli, “Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 3090–3092 (1999).
  12. S. J. Zilker, “Materials design and physics of organic photorefractive systems,” ChemPhysChem 1, 72–87 (2000).
  13. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
  14. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B. 105, 1277–1280 (2001).
  15. W. R. White and P. Wiltzius, “Real space measurement of structure in phase separating binary fluid mixtures,” Phys. Rev. Lett. 75, 3012–3015 (1995).
  16. H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, and S. T. Hyde, “Curvature determination of spinodal interface in a condensed matter system,” Phys. Rev. Lett. 78, 2248–2251 (1997).
  17. N. J. Everall, “Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy,” Appl. Spectrosc. 54, 773–782 (2000).
  18. H. Barańska, A. Łabudzińska, and J. Terpiński, Laser Raman Spectroscopy: Analytical Applications (Wiley, New York 1987), Chap. 5.
  19. N. J. Everall, “Measurement of orientation and crystallinity in uniaxially drawn poly(ethylene terephthalate) using polarized confocal Raman microscopy,” Appl. Spectrosc. 52, 1498–1504 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited