OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 28 — Oct. 1, 2001
  • pp: 5056–5063

Making an omnidirectional reflector

Bruno Gallas, Serge Fisson, Eric Charron, Aline Brunet-Bruneau, Gérard Vuye, and Josette Rivory  »View Author Affiliations


Applied Optics, Vol. 40, Issue 28, pp. 5056-5063 (2001)
http://dx.doi.org/10.1364/AO.40.005056


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of having a finite number of layers on the design of omnidirectional reflectors was investigated. It was shown that the structure should be finished with a low-index layer having a thickness larger than a quarter-wave to increase reflectivity, whereas layers below may remain of quarter-wave optical thickness at normal incidence angle. This general trend has been used for designing and realizing two a-Si–SiO2 (amorphous silicon and silicon dioxide) omnidirectional reflectors in the near-infrared range on a silicon and a silica substrate, respectively. Owing to the decrease of absorption of recrystallized silicon as compared with a-Si in the visible range, the transmissivity of the structure realized on silica substrate was dramatically increased in the visible range upon annealing, whereas the high reflectivity and the omnidirectional effect were maintained in the near-infrared range.

© 2001 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(230.1480) Optical devices : Bragg reflectors
(230.4170) Optical devices : Multilayers
(260.2130) Physical optics : Ellipsometry and polarimetry
(310.1860) Thin films : Deposition and fabrication

History
Original Manuscript: November 6, 2000
Revised Manuscript: May 21, 2001
Published: October 1, 2001

Citation
Bruno Gallas, Serge Fisson, Eric Charron, Aline Brunet-Bruneau, Gérard Vuye, and Josette Rivory, "Making an omnidirectional reflector," Appl. Opt. 40, 5056-5063 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-28-5056


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. V. Popov, J. A. Dobrowolski, A. V. Tikhonravov, B. T. Sullivan, “Broadband high-reflection multilayer coatings at oblique angles of incidence,” Appl. Opt. 36, 2139–2151 (1997). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999). [CrossRef]
  4. S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997). [CrossRef]
  5. Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef] [PubMed]
  6. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999). [CrossRef]
  7. K. M. Chen, A. W. Sparks, S.-C. Luan, D. R. Lim, K. Wada, L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75, 3805–3807 (1999). [CrossRef]
  8. W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt. 38, 5464–5467 (1999). [CrossRef]
  9. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, “All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control,” J. Lightwave Technol. 17, 2018–2024 (1999). [CrossRef]
  10. Y. Ishikawa, N. Shibata, S. Fukatsu, “Epitaxy-ready Si/SiO2 Bragg reflectors by multiple separation-by-implantation oxygen,” Appl. Phys. Lett. 69, 3881–3883 (1996). [CrossRef]
  11. D. C. Diaz, C. L. Schow, J. Qi, J. C. Campbell, J. C. Bean, L. J. Peticolas, “Si/SiO2 resonant cavity detector,” Appl. Phys. Lett. 69, 2798–2800 (1996). [CrossRef]
  12. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés,” Ann. Phys. (Paris) 5, 596–640 and 706–784 (1950).
  13. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, Bristol, UK, 1986), pp. 139–142 and 247–249.
  14. O. S. Heavens, H. M. Liddell, “Staggered broad-band reflecting multilayers,” Appl. Opt. 5, 373–376 (1966). [CrossRef] [PubMed]
  15. A. R. Forouhi, I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986). [CrossRef]
  16. W. Fukato, K. Yoshino, C. M. Fortmann, I. Shimizu, “Wide band gap amorphous silicon thin films prepared by chemical annealing,” J. Appl. Phys. 85, 812–818 (1999). [CrossRef]
  17. D. Souche, A. Brunet-Bruneau, S. Fisson, V. Nguyen Van, G. Vuye, F. Abelès, J. Rivory, “Visible and infrared ellipsometry study of ion assisted SiO2 films,” Thin Solid Films 313–314, 676–681 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited