OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 28 — Oct. 1, 2001
  • pp: 5114–5123

Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements

Judith R. Mourant, Tamara M. Johnson, and James P. Freyer  »View Author Affiliations


Applied Optics, Vol. 40, Issue 28, pp. 5114-5123 (2001)
http://dx.doi.org/10.1364/AO.40.005114


View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fiber-optic, polarized elastic-scattering spectroscopy techniques are implemented and demonstrated as a method for determining both scatterer size and concentration in highly scattering media. Measurements of polystyrene spheres are presented to validate the technique. Measurements of biological cells provide an estimate of the average effective scatterer radius of 0.5–1.0 µm. This average effective scatterer size is significantly smaller than the nucleus. In addition, to facilitate use of polarization techniques on biological cells, polarized angular dependent scattering from cell suspensions was measured. The light scattering from cells has properties similar to those of small spheres.

© 2001 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: October 2, 2000
Revised Manuscript: June 20, 2001
Published: October 1, 2001

Citation
Judith R. Mourant, Tamara M. Johnson, and James P. Freyer, "Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements," Appl. Opt. 40, 5114-5123 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-28-5114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000). [CrossRef] [PubMed]
  2. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). [CrossRef]
  3. K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5, 302–317 (1999), http://www.opticsexpress.org . [CrossRef] [PubMed]
  4. R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.
  5. R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  6. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  7. T. M. Johnson, J. R. Mourant, “Polarized wavelength-dependent measurements of turbid media,” Opt. Express 4, 200–216 (1999), http://www.opticsexpress.org . [CrossRef] [PubMed]
  8. J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. Johnson, A. Matanock, K. Stetter, J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000). [CrossRef] [PubMed]
  9. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998). [CrossRef]
  10. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  11. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  12. S. Bartel, A. H. Hielscher, “Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000). [CrossRef]
  13. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996). [CrossRef] [PubMed]
  14. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100. [CrossRef]
  15. M. J. Rackovich, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rasategar, G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiments,” Appl. Opt. 38, 3399–3408 (1999). [CrossRef]
  16. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998). [CrossRef]
  17. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium: errata,” Opt. Lett. 23, 1630 (1998). [CrossRef]
  18. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  19. A. Dogariu, M. Dogariu, K. Richardson, S. D. Jacobs, G. D. Boreman, “Polarization asymmetry in waves backscattering from highly absorbant random media,” Appl. Opt. 36, 8159–8167 (1997). [CrossRef]
  20. M. Dogariu, T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993). [CrossRef]
  21. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  22. M. J. Holbroke, B. J. Tromberg, X. Li, N. Shah, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000). [CrossRef]
  23. A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biopys. J. 14, 439–453 (1974). [CrossRef]
  24. H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties of solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996). [CrossRef] [PubMed]
  25. M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited