OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 29 — Oct. 10, 2001
  • pp: 5162–5169

High-capacity photorefractive neural network implementing a Kohonen topological map

Yann Frauel, Gilles Pauliat, André Villing, and Gérald Roosen  »View Author Affiliations

Applied Optics, Vol. 40, Issue 29, pp. 5162-5169 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed and built a high-capacity neural network based on volume holographic interconnections in a photorefractive crystal. We used this system to implement a Kohonen topological map. We describe and justify our optical setup and present some experimental results of self-organization in the learning database.

© 2001 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(160.5320) Materials : Photorefractive materials
(200.4700) Optics in computing : Optical neural systems
(210.2860) Optical data storage : Holographic and volume memories

Original Manuscript: October 13, 2000
Revised Manuscript: March 27, 2001
Published: October 10, 2001

Yann Frauel, Gilles Pauliat, André Villing, and Gérald Roosen, "High-capacity photorefractive neural network implementing a Kohonen topological map," Appl. Opt. 40, 5162-5169 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. H. Farhat, D. Psaltis, A. Prata, E. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985). [CrossRef] [PubMed]
  2. J. H. Hong, S. Campbell, P. Yeh, “Optical pattern classifier with perceptron learning,” Appl. Opt. 29, 3019–3025 (1990). [CrossRef] [PubMed]
  3. Y. Owechko, “Optical implementation of back-propagation neural networks using cascaded-grating holography,” Int. J. Opt. Comput. 2, 201–231 (1991).
  4. J. Duvillier, M. Killinger, K. Heggarty, K. Yao, J. L. de Bougrenet de la Tocnaye, “All-optical implementation of a self-organizing map: a preliminary approach,” Appl. Opt. 33, 258–266 (1994). [CrossRef] [PubMed]
  5. M. Barge, K. Heggarty, Y. Idan, R. Chevallier, “64-channel correlator implementing a Kohonen-like neural network for handwritten-digit recognition,” Appl. Opt. 35, 4655–4665 (1996). [CrossRef] [PubMed]
  6. C. Berger, N. Collings, R. Völke, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997). [CrossRef]
  7. M. Saffman, D. Montgomery, A. A. Zozulya, D. Z. Anderson, “Topology-preserving mappings in a self-imaging photorefractively pumped ring resonator,” Chaos, Solitons Fractals4, 2077–2092 (1994). [CrossRef]
  8. P. Aing, G. Pauliat, G. Roosen, “Noise issues in holographic photorefractive interconnections: application to neural networks,” Opt. Commun. 143, 87–94 (1997). [CrossRef]
  9. Y. Frauel, T. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997). [CrossRef]
  10. Y. Frauel, T. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network (Erratum),” Opt. Commun. 135, 335 (1997). [CrossRef]
  11. G. W. Burr, S. Kobras, H. Hanssen, H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779–6784 (1999). [CrossRef]
  12. K. Wagner, D. Psaltis, “Multilayer optical learning networks,” Appl. Opt. 26, 5061–5076 (1987). [CrossRef] [PubMed]
  13. G. A. Betzos, A. Lainé, P. A. Mitkas, “Improved associative recall of binary data in volume holographic memories,” Opt. Commun. 171, 37–44 (1999). [CrossRef]
  14. H.-Y. S. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993). [CrossRef] [PubMed]
  15. K. Wagner, T. M. Slagle, “Optical competitive learning with VLSI/liquid-crystal winner-take-all modulators,” Appl. Opt. 32, 1408–1435 (1993). [CrossRef] [PubMed]
  16. F. H. Mok, H. M. Stoll, “Holographic inner-product processor for pattern recognition,” in Optical Pattern Recognition IV, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE1701, 312–322 (1992).
  17. X. An, D. Psaltis, G. W. Burr, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999). [CrossRef]
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979). [CrossRef]
  19. H. Lee, X. G. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimal crosstalk,” J. Appl. Phys. 65, 2191–2194 (1989). [CrossRef]
  20. T. Kohonen, Self-organizing Maps (Springer-Verlag, Berlin, 1997). [CrossRef]
  21. T. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994). [CrossRef]
  22. Y. Frauel, G. Pauliat, G. Roosen, “Improvement of holographic neural networks by reducing the deleterious influence of the limited contrast of spatial light modulators,” Opt. Commun. 182, 311–319 (2000). [CrossRef]
  23. H.-Y. S. Li, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited