OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 3 — Jan. 20, 2001
  • pp: 321–326

Quantum-Cascade Laser Measurements of Stratospheric Methane and Nitrous Oxide

Christopher R. Webster, Gregory J. Flesch, David C. Scott, James E. Swanson, Randy D. May, W. Stephen Woodward, Claire Gmachl, Federico Capasso, Deborah L. Sivco, James N. Baillargeon, Albert L. Hutchinson, and Alfred Y. Cho  »View Author Affiliations


Applied Optics, Vol. 40, Issue 3, pp. 321-326 (2001)
http://dx.doi.org/10.1364/AO.40.000321


View Full Text Article

Acrobat PDF (1522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable quantum-cascade (QC) laser has been flown on NASA’s ER-2 high-altitude aircraft to produce the first atmospheric gas measurements with this newly invented device, an important milestone in the QC laser’s future planetary, industrial, and commercial applications. Using a cryogenically cooled QC laser during a series of 20 aircraft flights beginning in September 1999 and extending through March 2000, we took measurements of methane (CH4) and nitrous oxide (N2O) gas up to ~20 km in the stratosphere over North America, Scandinavia, and Russia. The QC laser operating near an 8-μm wavelength was produced by the groups of Capasso and Cho of Bell Laboratories, Lucent Technologies, where QC lasers were invented in 1994. Compared with its companion lead salt diode lasers that were also flown on these flights, the single-mode QC laser cooled to 82 K and produced higher output power (10 mW), narrower laser linewidth (17 MHz), increased measurement precision (a factor of 3), and better spectral stability (~0.1 cm−1 K). The sensitivity of the QC laser channel was estimated to correspond to a minimum-detectable mixing ratio for methane of approximately 2 parts per billion by volume.

© 2001 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.0300) Spectroscopy : Spectroscopy

Citation
Christopher R. Webster, Gregory J. Flesch, David C. Scott, James E. Swanson, Randy D. May, W. Stephen Woodward, Claire Gmachl, Federico Capasso, Deborah L. Sivco, James N. Baillargeon, Albert L. Hutchinson, and Alfred Y. Cho, "Quantum-Cascade Laser Measurements of Stratospheric Methane and Nitrous Oxide," Appl. Opt. 40, 321-326 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-3-321


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Tacke, “New developments and applications of tunable IR lead salt lasers,” Infrared Phys. Technol. 36, 447–463 (1995).
  2. C. R. Webster, S. P. Sander, R. Beer, R. D. May, R. G. Knollenberg, D. M. Hunten, and J. Ballard, “Tunable diode laser infrared spectrometer for in-situ measurements of the gas phase composition and particle size distribution of Titan’s atmosphere,” Appl. Opt. 29, 907–917 (1990).
  3. K. P. Petrov, A. T. Ryan, T. L. Patterson, L. Huang, and S. J. Field, “Mid-IR spectroscopic detection of trace gases using guided-wave difference-frequency generation,” Appl. Phys. B 67, 357–361 (1998).
  4. S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, and H. Temkin, “Low-threshold continuous operation of InGaAs/InGaAsP quantum well lasers at 2 microns,” Electron. Lett. 29, 574–576 (1993).
  5. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–555 (1994).
  6. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).
  7. F. Capasso, C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade lasers,” Opt. Photon. News 10(10), 31–37 (1999).
  8. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
  9. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
  10. C. Gmachl, A. M. Sergent, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Improved cw operation of quantum cascade lasers with epitaxial-side heat-sinking,” IEEE Photon. Technol. Lett. 11, 1369–1371 (1999).
  11. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
  12. R. D. May and C. R. Webster, “Balloon-borne laser spectrometer measurements of NO2 with gas absorption sensitivities below 10−5,” Appl. Opt. 29, 5042–5044 (1990).
  13. R. M. Williams, J. F. Kelly, J. S. Hartman, S. W. Sharpe, M. S. Taubman, J. L. Hall, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Kilo-hertz linewidth from frequency stabilized mid-infrared quantum cascade lasers,” Opt. Lett. 24, 1844–1846 (1999).
  14. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
  15. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. M. J. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
  16. C. R. Webster, R. D. May, R. Toumi, and J. Pyle, “Active nitrogen partitioning and the nighttime formation of N2O5 in the stratosphere: simultaneous in-situ measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS diode laser spectrometer,” J. Geophys. Res. 95, 13851–13866 (1990).
  17. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).
  18. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999).
  19. R. L. Herman, D. C. Scott, C. R. Webster, R. D. May, E. J. Moyer, R. J. Salawitch, Y. L. Yung, G. C. Toon, B. Sen, J. J. Margitan, K. H. Rosenlof, H. A. Michelsen, and J. W. Elkins, “Tropical entrainment timescales inferred from stratospheric N2O and CH4 observations,” Geophys. Res. Lett. 25, 2781–2784 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited