OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 3 — Jan. 20, 2001
  • pp: 331–335

Spectral radiative-transfer modeling with minimized computation time by use of a neural-network technique

Harry Schwander, Anton Kaifel, Ansgar Ruggaber, and Peter Koepke  »View Author Affiliations


Applied Optics, Vol. 40, Issue 3, pp. 331-335 (2001)
http://dx.doi.org/10.1364/AO.40.000331


View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach based on a neural-network technique for reduction in the computation time of radiative-transfer models is presented. This approach gives high spectral resolution without significant loss of accuracy. A rigorous radiative-transfer model is used to calculate radiation values at a few selected wavelengths, and a neural-network algorithm replenishes them to a complete spectrum with radiation values at a high spectral resolution. This method is used for the UV and visible spectral ranges. The results document the ability of a neural network to learn this specific task. More than 20,000 UV-index values for all kinds of atmosphere are calculated by both the rigorous radiative-transfer model alone and the model in combination with the neural-network algorithm. The agreement between both approaches is generally of the order of ±1%; the computation time is reduced by a factor of more than 20. The new algorithm can be used for all kinds of high-quality radiative-transfer model to speed up computation time.

© 2001 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(030.5620) Coherence and statistical optics : Radiative transfer
(040.7190) Detectors : Ultraviolet
(200.4260) Optics in computing : Neural networks

History
Original Manuscript: February 16, 2000
Revised Manuscript: September 29, 2000
Published: January 20, 2001

Citation
Harry Schwander, Anton Kaifel, Ansgar Ruggaber, and Peter Koepke, "Spectral radiative-transfer modeling with minimized computation time by use of a neural-network technique," Appl. Opt. 40, 331-335 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-3-331

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited