OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 3 — Jan. 20, 2001
  • pp: 331–335

Spectral radiative-transfer modeling with minimized computation time by use of a neural-network technique

Harry Schwander, Anton Kaifel, Ansgar Ruggaber, and Peter Koepke  »View Author Affiliations


Applied Optics, Vol. 40, Issue 3, pp. 331-335 (2001)
http://dx.doi.org/10.1364/AO.40.000331


View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach based on a neural-network technique for reduction in the computation time of radiative-transfer models is presented. This approach gives high spectral resolution without significant loss of accuracy. A rigorous radiative-transfer model is used to calculate radiation values at a few selected wavelengths, and a neural-network algorithm replenishes them to a complete spectrum with radiation values at a high spectral resolution. This method is used for the UV and visible spectral ranges. The results document the ability of a neural network to learn this specific task. More than 20,000 UV-index values for all kinds of atmosphere are calculated by both the rigorous radiative-transfer model alone and the model in combination with the neural-network algorithm. The agreement between both approaches is generally of the order of ±1%; the computation time is reduced by a factor of more than 20. The new algorithm can be used for all kinds of high-quality radiative-transfer model to speed up computation time.

© 2001 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(030.5620) Coherence and statistical optics : Radiative transfer
(040.7190) Detectors : Ultraviolet
(200.4260) Optics in computing : Neural networks

History
Original Manuscript: February 16, 2000
Revised Manuscript: September 29, 2000
Published: January 20, 2001

Citation
Harry Schwander, Anton Kaifel, Ansgar Ruggaber, and Peter Koepke, "Spectral radiative-transfer modeling with minimized computation time by use of a neural-network technique," Appl. Opt. 40, 331-335 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-3-331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Koepke, A. Bais, D. Balis, M. Buchwitz, H. D. Backer, X. D. Cabo, P. Eckert, P. Erikson, D. Gillotay, A. Heikkilä, T. Koskela, B. Lapeta, Z. Littynska, J. Lorente, B. Mayer, A. Renaud, A. Ruggaber, G. Schauberger, G. Seckmeyer, P. Seifert, A. Schmalwieser, H. Schwander, K. Vanicek, M. Weber, “Comparison of models used for UV index calculations,” Photochem. Photobiol. 67, 657–662 (1998). [CrossRef] [PubMed]
  2. A. Ruggaber, R. Dlugi, T. Nakajima, “Modeling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994). [CrossRef]
  3. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]
  4. M. Van Weele, M. Blumthaler, C. Brogniez, O. Engelsen, D. Gillotay, J. Lenoble, T. Martin, P. den Outer, G. Pfister, A. Ruggaber, B. Walraven, P. Weihs, “1999: From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. 105, D4, 4915–4925 (2000).
  5. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” (NASA, Hampton, Va., 1985).
  6. P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-comtaminated snow,” J. Geophys. Res. 88, C15, 10,837–10,843 (1983).
  7. D. D. Doda, A. E. S. Green, “Surface reflectance measurements in the UV-B from an airborne platform. Part I,” Appl. Opt. 19, 2140–2145 (1980); “Surface reflectance measurements in the UV-B from an airborne platform. Part II,” Appl. Opt. 20, 636–642 (1981). [CrossRef] [PubMed]
  8. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  9. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” Environmental Research Paper 441, (Air Force Cambridge Research Laboratories, Bedford, Mass., 1972).
  10. U. Köhler, W. Vandersee, P. Winkler, “Spektrale und integrale Messungen der UV-B-Strahlung im Vergleich zu Ozonmessungen,” (Deutscher Wetterdienst, Meteorologisches Observatorium, Hohenpeissenberg, Germany, 1995).
  11. J. M. Zurada, Introduction to Artificial Neural Network Systems (West Publishing, St. Paul, Minn., 1992).
  12. A. F. Murray, Applications of Neural Networks (Kluwer Academic, Boston, Mass., 1995). [CrossRef]
  13. K. M. Hornik, R. W. Stincombe, “Multilayer feed-forward networks are universal approximators,” Neural Networks 2, 359–366 (1989). [CrossRef]
  14. L. J. Landau, J. G. Taylor, eds., Concepts for Neural Networks: a Survey (Springer-Verlag, New York, 1998). [CrossRef]
  15. M. Riedmiller, H. Braun, “A direct adaptive method for faster backpropagation learning: the RPROP algorithm,” ICNN-93, in IEEE International Conference on Neural Networks, San Francisco, Calif., 1993 (Institute of Electrical and Electronic Engineers, New York, 1993), pp. 586–591.
  16. M. van Hoosier, Naval Research Laboratory Washington, D.C. (personal communication, 1996). The solar spectrum is available at ftp from ftp://susim.nrl.navy.mil/pub/atlas3 .
  17. World Meteorological Organisation (WMO), Report of the WMO–WHO Meeting of Experts on Standardization of UV Indices and their Dissemination to the Public, (Les Diablerets, Switzerland, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited