OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 3 — Jan. 20, 2001
  • pp: 349–359

Single-arm double-mode double-order planar waveguide interferometric sensor

Sergey S. Sarkisov, Darnell E. Diggs, Grigory Adamovsky, and Michael J. Curley  »View Author Affiliations

Applied Optics, Vol. 40, Issue 3, pp. 349-359 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sensor is described for which interference measurements of the phase delay between two propagating modes of different orders in a slab thin-film waveguide are used as the sensing technique. The basic building block of the sensor is a polymer film doped with an indicator dye such as Bromocresol Purple. The modes of two orders such as TM0 and TM1 are simultaneously excited in the light-guiding film with a focusing optics and a prism coupler. The modes are decoupled from the film and recombined to produce an interference pattern in the face of an output optical fiber. The sensitivity of the sensor to the ambient temperature change is 1.5 °C, and the sensitivity to NH3 is 200 parts in 106 for one full oscillation of the signal.

© 2001 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors

Original Manuscript: May 3, 2000
Revised Manuscript: September 22, 2000
Published: January 20, 2001

Sergey S. Sarkisov, Darnell E. Diggs, Grigory Adamovsky, and Michael J. Curley, "Single-arm double-mode double-order planar waveguide interferometric sensor," Appl. Opt. 40, 349-359 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dakin, B. Culshaw, eds., Applications, Analysis, and Future Trends, Vol. 4 of Optical Fiber Sensors (Artech House, Boston, Mass., 1997).
  2. G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, Boston, Mass., 1996).
  3. K. E. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992). [CrossRef]
  4. N. F. Hartman, J. L. Walsh, D. P. Campbell, U. Akki, “Integrated optic gaseous NH3 sensor for agricultural applications,” in Optics in Agriculture, Forestry, and Biological Processing, G. E. Meyer, J. A. DeShazer, eds., Proc. SPIE2345, 314–323 (1995). [CrossRef]
  5. N. F. Hartman, J. M. Cobb, J. G. Edwards, “Optical system-on-a-chip for chemical and biochemical sensing: the platform,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallahi, R. J. Nordstrom, T. R. Todd, eds., Proc. SPIE3537, 0–7 (1999).
  6. P. Hlubina, P. Prochazka, “Sensor application of two-mode fiber in the Michelson interferometer configuration,” in Interferometry’94: Interferometry Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 202–211 (1994).
  7. L. M. Lechuda, A. T. M. Lenferink, R. P. H. Kooyman, J. Greve, “Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects,” Sensors Actuators B 25, 762–765 (1995). [CrossRef]
  8. R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “Novel waveguide Mach–Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410–424 (1994). [CrossRef]
  9. P. Plizka, W. Lukasz, “Integrated-optical acoustical sensor,” Sensors Actuators A 41, 93–97 (1994). [CrossRef]
  10. Ch. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “Difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993). [CrossRef]
  11. W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, R. Willsch, “Phase-sensitive fibre-optic monoptodes for chemical sensing,” Sensors Actuators B 11, 475–479 (1993). [CrossRef]
  12. A. A. Boiarski, J. R. Busch, R. S. Brody, R. W. Ridgway, W. P. Altman, C. Golden, “Integrated optic sensor for measuring aflatoxin-B1 in corn,” in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE2686, 45–52 (1996). [CrossRef]
  13. Yu. M. Shirshov, S. V. Svechnikov, A. P. Kiyanovskii, Yu. V. Ushenin, E. F. Venger, A. V. Samoylov, R. Merker, “A sensor based on the planar-polarization interferometer,” Sensors Actuators A 68, 384–387 (1998). [CrossRef]
  14. T. Tamir, ed., Integrated Optics (Springer-Verlag, Berlin, 1979), p. 47.
  15. S. S. Sarkisov, A. Wilkosz, P. Venkateswarlu, “Nonlinear optical waveguides based on polymeric films doped with phthalocyanines,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow, M. Osinsky, eds., Proc. SPIE2693, 523–531 (1996). [CrossRef]
  16. R. B. Linscoff, ed., The Photonics Design and Applications Handbook (Laurin, Pittsfield, Mass., 1999).
  17. E. Nitanai, S. Miyanaga, “Measurements of dispersion properties of refractive indices and absorption coefficients in organic dye-doped thin films by a prism coupling method,” Opt. Eng. 35, 900–903 (1996). [CrossRef]
  18. R. Klein, E. I. Voges, “Integrated optics ammonia sensor,” in Advances in Fluorescence Sensing Technology, J. R. Lakiwicz, R. B. Thompson, eds., Proc. SPIE1885, 81–92 (1993). [CrossRef]
  19. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973). [CrossRef] [PubMed]
  20. D. R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, New York, 1996), p. D-148.
  21. P. Caglar, R. Narayanaswamy, “Ammonia-sensitive fibre optic probe utilizing an immobilized spectrophotometric indicator,” Analyst 112, 1285–1288 (1987). [CrossRef]
  22. R. G. Hunsperger, Integrated Optics (Springer-Verlag, Berlin, 1995), p. 25.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited