OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 3 — Jan. 20, 2001
  • pp: 391–399

Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar

Didier Bruneau  »View Author Affiliations


Applied Optics, Vol. 40, Issue 3, pp. 391-399 (2001)
http://dx.doi.org/10.1364/AO.40.000391


View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theoretical performance of a Mach–Zehnder interferometer used as a spectral analyzer for wind-speed measurement by direct-detection Doppler lidar is presented. The interferometer is optimized for measurement of wind velocity from the signal backscattered by the molecules. Two arrangements are proposed, involving two detection channels (DMZ) or four detection channels (QMZ). Using the assumption of a pure molecular signal with a Gaussian spectral profile, we derive an analytic expression for the standard deviation of the measurement error for each arrangement. They are then compared with the ideal spectral analyzer (ISA) and with the double-edge Fabry–Perot (DFP) in the case of a shot-noise-limited signal. The DMZ measurement error is shown to be only 1.65 times that of the ISA and is 1.4 times lower than that given by the DFP. The QMZ arrangement provides a measurement that is insensitive to the aerosol scattering contribution but gives a measurement error that is 1.4 times higher than that of the DMZ.

© 2001 Optical Society of America

OCIS Codes
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: April 21, 2000
Revised Manuscript: September 19, 2000
Published: January 20, 2001

Citation
Didier Bruneau, "Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar," Appl. Opt. 40, 391-399 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-3-391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989). [CrossRef]
  2. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986). [CrossRef] [PubMed]
  3. B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995). [CrossRef] [PubMed]
  4. European Space Agency/Earth Sciences Division, P. Ingman, “The four candidate Earth explorer core missions—atmospheric dynamics,” , B. Battrick, ed. (ESA Publication Division, European Space Research and Technology Center, Noordwijk, The Netherlands, July1999).
  5. V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992). [CrossRef] [PubMed]
  6. D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990). [CrossRef] [PubMed]
  7. S. H. Bloom, R. Kremer, P. A. Searcy, M. Rivers, J. Menders, E. Korevaar, “Long-range, noncoherent laser Doppler velocimeter,” Opt. Lett. 16, 1794–1796 (1991). [CrossRef] [PubMed]
  8. A. Garnier, M.-L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992). [CrossRef]
  9. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992). [CrossRef] [PubMed]
  10. B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994). [CrossRef] [PubMed]
  11. C. L. Korb, B. M. Gentry, S. X. Xingfu Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997). [CrossRef] [PubMed]
  12. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2421 (1999). [CrossRef]
  13. C. Souprayen, A. Garnier, A. Hertzog, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38, 2422–2431 (1999). [CrossRef]
  14. C. Flesia, C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999). [CrossRef]
  15. M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998). [CrossRef]
  16. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998). [CrossRef]
  17. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998). [CrossRef]
  18. J. M. Vaughan, “Wind lidar: fundamental review of heterodyne and direct detection methods,” (Defense Evaluation and Research Agency, Farnborough, Hamphire, UK, 1999).
  19. Z. Liu, T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996). [CrossRef]
  20. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  21. J.-M. Gagné, J.-P. Saint-Dizier, M. Picard, “Méthode d’échantillonnage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974). [CrossRef]
  22. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993). [CrossRef]
  23. R. Chabbal, “Finesse limite d’un Fabry–Perot formé de lames imparfaites,” J. Phys. Rad. 19, 295–299 (1958). [CrossRef]
  24. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings or Fabry–Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited