OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5304–5320

Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory

Volker Wulfmeyer and Craig Walther  »View Author Affiliations

Applied Optics, Vol. 40, Issue 30, pp. 5304-5320 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of a future advanced water-vapor differential absorption lidar (DIAL) system is discussed. It is shown that the system has to be a direct-detection system operating in the ρστ band of water vapor in the 940-nm wavelength region. The most important features of the DIAL technique are introduced: its clear-air measurement capability, its flexibility, and its simultaneous high resolution and accuracy. It is demonstrated that such a DIAL system can contribute to atmospheric sciences over a large range of scales and over a large variety of humidity conditions. An extended error analysis is performed, and errors (e.g., speckle noise) are included that previously were not been discussed in detail and that become important for certain system designs and measurement conditions. The applicability of the derived equation is investigated by comparisons with real data. Excellent agreement is found.

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

Original Manuscript: November 17, 2000
Revised Manuscript: May 15, 2001
Published: October 20, 2001

Volker Wulfmeyer and Craig Walther, "Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory," Appl. Opt. 40, 5304-5320 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Committee on Global Change Research and Board on Sustainable Development, National Research Council, eds., Global Environmental Change: Research Pathways for the Next Decade (National Academy Press, Washington, D.C., 1998).
  2. K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).
  3. Board on Atmospheric Sciences and Climate of the National Research Council, ed., The Atmospheric Sciences Entering the Twenty-First Century (National Academy Press, Washington, D.C., 1998).
  4. World Meteorological Organization, Global Energy and Water Cycle Experiment (GEWEX)—Report on the First GEWEX Temperature/Humidity Retrieval Workshop, World Meteorological Organization, (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910).
  5. D. C. O’Starr, S. H. Melfi, eds. “The role of water vapor in climate,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).
  6. D. C. O’Starr, S. H. Melfi, Implementation Plan for the Pilot Phase of the Global Water Vapor Project, Publ. 2 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1991).
  7. World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Science Plan, Publ. 27 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md., 20910, 1999).
  8. World Meteorological Organization, The WCRP/GEWEX Global Water Vapor Project (GVaP): Implementation Plan, Publ. 32 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md. 20910, 1999).
  9. World Meteorological Organization, GCIP Implementation Plan, 1994: Implementation Plan for GEWEX Continental-Scale Project (GCIP), Publ. 8 (International GEWEX Project Office, 1010 Wayne Ave., Silver Spring, Md., 20910, 1994), Vol. II.
  10. G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994). [CrossRef]
  11. K. P. Shine, A. Sinha, “Sensitivity of the Earth’s climate to height-dependent changes in water vapor mixing ratio,” Nature (London) 354, 382–384 (1991). [CrossRef]
  12. N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124, 1767–1785 (1996). [CrossRef]
  13. T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999). [CrossRef]
  14. T. M. Weckwerth, “The effect of small-scale moisture variability on thunderstorm initiation,” Mon. Weather Rev. 128, 4017–4030 (2000). [CrossRef]
  15. F. Guichard, D. Parsons, E. Miller, “Thermodynamics and radiative impact of the correction of sounding humidity bias in the tropics,” J. Climate 13, 3611–3624 (2000). [CrossRef]
  16. V. Wulfmeyer, C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001). [CrossRef]
  17. R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  18. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989). [CrossRef] [PubMed]
  19. V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  20. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  21. A. Ansmann, “Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985). [CrossRef] [PubMed]
  22. A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987). [CrossRef] [PubMed]
  23. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998). [CrossRef]
  24. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  25. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  26. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  27. V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999). [CrossRef]
  28. V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999). [CrossRef]
  29. R. A. Ferrare, S. Ismail, E. V. Browell, V. C. Brackett, S. A. Kooi, M. B. Clayton, S. H. Melfi, D. N. Whiteman, G. Schwemmer, K. D. Evans, P. V. Hobbs, J. P. Veefkind, P. B. Russell, J. M. Livingston, P. Hignett, B. N. Bolben, L. A. Remer, “LASE measurements of aerosols and water vapor during TARFOX,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 11–14.
  30. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999). [CrossRef]
  31. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991). [CrossRef] [PubMed]
  32. G. Ehret, A. Fix, V. Weiss, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998). [CrossRef]
  33. F. Fabry, C. Frush, I. Zawadzki, A. Kilambi, “On the extraction of near-surface index of refraction using radar phase measurements from ground targets,” J. Atmos. Ocean. Technol. 14, 978–987 (1997). [CrossRef]
  34. E. E. Gossard, D. E. Wolfe, B. B. Stankov, “Measurement of humidity profiles in the atmosphere by the global positioning system and radar wind profilers,” J. Atmos. Ocean. Technol. 16, 156–164 (1999). [CrossRef]
  35. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, St. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995). [CrossRef] [PubMed]
  36. V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996). [CrossRef] [PubMed]
  37. E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214, paper ThA4.
  38. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.
  39. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  40. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).
  41. J. L. Machol, R. M. Hardesty, B. J. Rye, C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Proceedings, 18th International Laser Radar Conference (Institut für Troposphärenforschung, Leipzig, Germany, 57 (1996), p. 57.
  42. L. M. Little, P. D. Dragic, S. D. Roh, J. J. Coleman, G. C. Papen, “Initial development of a fiber-based LIDAR system for atmospheric water vapor measurements,” (NASA Langley Research Center, Hampton, Va., (1998), pp. 301–303.
  43. P. Quaglia, D. Bruneau, A. Abchiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonnier, P. Flamant, J. Pelon, “The airborne water-vapor lidar LEANDREII: design, realization, tests, and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, R. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  44. H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in Advances in Laser Remote Sensing, Editions de l’Ecole Polytechnique (Service d’Aéronomy, Paris, 2001), pp. 293–298.
  45. American Geophysical Union, Water Vapor in the Climate System (American Geophysical Union, Washington, D.C., 1995).
  46. B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–293 (1989). [CrossRef]
  47. B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]
  48. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN Molecular Database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  49. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” (Air Force Cambridge Research Laboratories, Bedford, Mass., 1968).
  50. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Spectral Sciences, Burlington, Mass., 1989).
  51. G. S. Kent, G. M. Hansen, “Scanning lidar with a coupled radar safety system,” Appl. Opt. 38, 6383–6387 (1999). [CrossRef]
  52. American National Standards Institute, “American National Standard Z136.1-1986: Safe Use of Lasers (American National Standards Institute, New York, 1986).
  53. S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997). [CrossRef] [PubMed]
  54. E. D. Hinkley, ed. Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976). [CrossRef]
  55. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1983).
  56. F. G. Stremler, Introduction to Communication Systems, 2nd ed. (Addison-Wesley, Reading, Mass.1982), p. 511.
  57. B. J. Rye, “Power ratio estimation in incoherent backscatter lidar: direct detection with Gaussian noise,” Appl. Opt. 28, 3639–3646 (1989). [CrossRef] [PubMed]
  58. B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997). [CrossRef]
  59. E. R. Murray, R. D. Hake, J. E. Van der Laan, J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976). [CrossRef]
  60. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984). [CrossRef] [PubMed]
  61. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987). [CrossRef] [PubMed]
  62. W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. Rye, “Combined wind and water-vapor measurements using the NOAA Mini-MOPA Doppler lidar,” in 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1NASA, Washington, D.C., (1998), pp. 565–568.
  63. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High resolution Doppler lidar for boundary layer and cloud research,” J. Ocean. Atmos. Technol. 18, 376–393 (2001). [CrossRef]
  64. V. Wulfmeyer, A. Brewer, A. Weickmann, R. Richter, J. Vanandel, J. Howell, R. Richter, C. Grund, M. Hardesty, P. Hildebrand, “NCAR/NOAA high-resolution Doppler lidar for wind measurements and its potential for water-vapor differential absorption lidar,” presented at the Fourth International Symposium on Tropospheric Profiling, Snowmass, Colo., September 21–25, 1998.
  65. W. A. Brewer, R. M. Hardesty, “Development of a dual-wavelength CO2 mini-MOPA Doppler lidar,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 293–296.
  66. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998). [CrossRef]
  67. P. Beckmann, Probability in Communication Engineering (Harcourt, Brace, World, New York, 1967), Chap. 4.
  68. M. Elbaum, P. Diamant, “SNR in photocounting images of rough objects in partially coherent light,” Appl. Opt. 15, 2268–2275 (1976). [CrossRef] [PubMed]
  69. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999). [CrossRef]
  70. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978). [CrossRef] [PubMed]
  71. E. V. Browell, T. D. Wilkerson, T. J. Illrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979). [CrossRef] [PubMed]
  72. G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  73. A. Ansmann, “Fehleranalyse der Differential-Absorption-Lidartechnik zur Ermittlung des troposphärischen Wasserdampfes anhand von Modellsimulationen,” diploma dissertation (University of Hamburg, Hamburg, Germany, 1984).
  74. D. Lenschow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330–1347 (2000). [CrossRef]
  75. H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observations in the free atmosphere,” Meteorol. Z. 7, 377–391 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited