OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5370–5378

Two-dimensional two-wavelength emission technique for soot diagnostics

Francesco Cignoli, Silvana De Iuliis, Vittorio Manta, and Giorgio Zizak  »View Author Affiliations


Applied Optics, Vol. 40, Issue 30, pp. 5370-5378 (2001)
http://dx.doi.org/10.1364/AO.40.005370


View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-dimensional soot diagnostic technique has been developed as an extension of the well-known two-color pyrometry. Two flame images are simultaneously collected on a CCD at selected wavelengths through suitable optics. By use of the dependence of soot emissivity on the soot volume fraction and by comparison with images from a calibrated light source, both the temperature field and the soot distribution can be determined. Validation was carried out through data obtained with other soot diagnostic methods on ethylene diffusion and Diesel oil-rich premixed flames. The current technique readily allowed us to obtain a large amount of data for a thorough description of the soot distribution within the flame. As an example of the technique’s potential, data about methane and propane diffusion flames are reported.

© 2001 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics

History
Original Manuscript: December 19, 2000
Revised Manuscript: May 30, 2001
Published: October 20, 2001

Citation
Francesco Cignoli, Silvana De Iuliis, Vittorio Manta, and Giorgio Zizak, "Two-dimensional two-wavelength emission technique for soot diagnostics," Appl. Opt. 40, 5370-5378 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-30-5370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992). [CrossRef]
  2. S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989). [CrossRef]
  3. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  4. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flames,” Appl. Opt. 37, 7865–7874 (1998). [CrossRef]
  5. P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997). [CrossRef] [PubMed]
  6. D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999). [CrossRef]
  7. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  8. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995). [CrossRef]
  9. C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  10. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996). [CrossRef]
  11. R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring-down,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67. [CrossRef]
  12. R. G. Siddall, I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1962), pp. 102–110.
  13. P. J. Pagni, S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.
  14. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998). [CrossRef]
  15. Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. Diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).
  16. H. X. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D.I. Diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  17. M. Klassen, Y. R. Sivathanu, J. L. Gore, “Simultaneous emission absorption measurements in toluene-fueled pool flames: mean and RMS properties,” Combust. Flame 90, 34–44 (1992). [CrossRef]
  18. M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Simultaneous optical measurement of soot volume fraction and temperature in premixed flames,” Combust. Flame 99, 174–186 (1994). [CrossRef]
  19. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different height by extinction/scattering technique,” in Proceedings of the 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1549–1555. [CrossRef]
  20. S. di Stasio, P. Massoli, “Influence of the soot properties uncertainties in temperature and volume-fraction measurements by two-color pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994). [CrossRef]
  21. H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990). [CrossRef]
  22. F. Cignoli, S. De Iuliis, G. Zizak, “Soot load versus aromatic concentration in Diesel oil premixed flames,” Fuel 80, 945–955 (2001). [CrossRef]
  23. U. Anselmi-Tamburini, G. Campari, G. Spinolo, P. Lupotto, “A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions,” Rev. Sci. Instrum. 66, 5006–5014 (1995). [CrossRef]
  24. M. B. Boslough, T. J. Ahrens, “A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K,” Rev. Sci. Instrum. 60, 3711–3716 (1989). [CrossRef]
  25. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  26. R. J. Santoro, H. G. Semerjian, “Soot formation in diffusion flames: flow rate, fuel species, and temperature effects,” in Proceedings of the 20th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 997–1006.
  27. L. R. Boedeker, G. M. Dobbs, “CARS temperature measurements in sooting, laminar diffusion flames,” Combust. Sci. Technol. 46, 301–323 (1986). [CrossRef]
  28. R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1989). [CrossRef]
  29. J. H. Kent, D. R. Honnery, “A soot formation rate map for a laminar ethylene diffusion flame,” Combust. Flame 79, 287–298 (1990). [CrossRef]
  30. R. Villasenor, I. M. Kennedy, “Soot formation and oxidation in laminar diffusion flames,” in Proceedings of the 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1023–1030. [CrossRef]
  31. O. L. Gulder, “Soot formation in laminar diffusion flames at elevated temperatures,” Combust. Flame 88, 74–82 (1992). [CrossRef]
  32. O. L. Gulder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flame,” Combust. Flame 92, 115–124 (1993). [CrossRef]
  33. P. B. Sunderland, G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996). [CrossRef]
  34. I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, “Modeling and measurements of soot and species in a laminar diffusion flame,” Combust. Flame 107, 368–382 (1996). [CrossRef]
  35. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992). [CrossRef] [PubMed]
  36. J. Vattulainen, V. Nummela, R. Hernberg, J. Kytola, “A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large Diesel engines,” Meas. Sci. Technol. 11, 103–112 (2000). [CrossRef]
  37. W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” in Proceedings of the 4th JSME-KSME Thermal Engineering Conference (Japan Society of Mechanical Engineers, Tokyo, Japan, 2000).
  38. W. Lee, Y. D. Na, “Determination of the soot temperature in laminar diffusion flames at elevated pressures using two-wavelength pyrometry with Abel inversion,” in Book-of-Abstracts of the 28th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited