OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5379–5387

Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique

Dieter Most and Alfred Leipertz  »View Author Affiliations


Applied Optics, Vol. 40, Issue 30, pp. 5379-5387 (2001)
http://dx.doi.org/10.1364/AO.40.005379


View Full Text Article

Enhanced HTML    Acrobat PDF (2646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time, to the best of our knowledge, two-dimensional instantaneous measurements of the flow velocity and the gas temperature have been performed in a turbulent flame with simultaneous use of particle image velocimetry and planar filtered Rayleigh scattering. These single-shot measurements provide simultaneous information on the local flame structure (curvature and temperature gradients) and on the local flow conditions (vortices, flow divergences, and strain rates). The applicability of the technique is demonstrated in a turbulent lean CH4–air V flame.

© 2001 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.5850) Scattering : Scattering, particles
(290.5870) Scattering : Scattering, Rayleigh

History
Original Manuscript: September 21, 2000
Revised Manuscript: May 10, 2001
Published: October 20, 2001

Citation
Dieter Most and Alfred Leipertz, "Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique," Appl. Opt. 40, 5379-5387 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-30-5379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic, London, 1981).
  2. M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, 1st ed. (Springer-Verlag, Berlin, 1998). [CrossRef]
  3. J. H. Frank, A. M. Kalt, R. W. Bilger, “Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV,” Combust. Flame 116, 220–232 (1999). [CrossRef]
  4. J. E. Rehm, N. T. Clemens, “The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames,” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1113–1120.
  5. C. D. Carter, J. M. Donbar, J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B. 66, 129–132 (1998). [CrossRef]
  6. E. J. Stevens, K. N. C. Bray, B. Lecordier, “Velocity and scalar statistics for premixed turbulent stagnation flames using PIV,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 949–955. [CrossRef]
  7. D. Most, A. Soika, F. Dinkelacker, A. Leipertz, “Simultaneous planar OH and temperature measurements for the detection of lifted reaction zones in premixed bluff-body stabilized flames,” in Developments, Laser Techniques, and Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 2000), pp. 505–519.
  8. A. Soika, F. Dinkelacker, A. Leipertz, “Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry,” in Proceedings of 27th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 785–792. [CrossRef]
  9. D. Duarte, P. Ferrao, M. V. Heitor, “Flame structure characterization based on Rayleigh thermometry and two-point laser Doppler measurements,” in Laser Techniques Applied to Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, eds. (Springer-Verlag, Berlin, 1997), pp. 185–249.
  10. D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996). [CrossRef]
  11. D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of 26th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950. [CrossRef]
  12. J. N. Forkey, W. R. Lempert, R. B. Miles, “Accuracy limits for planar measurements of flow velocity, temperature and pressure using filtered Rayleigh scattering,” Exp. Fluids 24, 151–162 (1998). [CrossRef]
  13. G. S. Elliott, M. Samimy, “Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties,” AIAA J. 34, 2346–2352 (1996). [CrossRef]
  14. A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000). [CrossRef]
  15. F. O’Young, R. W. Bilger, “Scalar gradient and related quantities in turbulent premixed flames,” Combust. Flame 109, 682–700 (1997). [CrossRef]
  16. W. L. Roberts, J. F. Driscoll, M. C. Drake, J. W. Ratcliffe, “OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex,” in Proceedings of 24th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1992), pp. 169–176. [CrossRef]
  17. T. Poinsot, D. Veynante, S. Candel, “Diagrams of premixed turbulent combustion based on direct simulation,” in Proceedings of 23rd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 613–619.
  18. D. Most, A. Leipertz, “Filtered Rayleigh scattering thermometry—calibration of cross section factors,” in Joint Meeting of the British, German and French Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1999), pp. 475–477.
  19. G. S. Elliot, N. Glumac, D. C. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997). [CrossRef]
  20. A. P. Yalin, R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590–592 (1999). [CrossRef]
  21. J. Mach, P. L. Varghese, “Velocity measurements by modulated filtered Rayleigh scattering using diode lasers,” AIAA J. 37, 695–699 (1999). [CrossRef]
  22. R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities” paper AIAA-92-3894, presented at 17th Aerospace Ground Testing Conference, Nashville, Tennessee, 6–8 July 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).
  23. J. Haumann, A. Leipertz, “Flame-temperature measurements using the Rayleigh scattering photon-correlation technique,” Opt. Lett. 9, 487–489 (1984). [CrossRef] [PubMed]
  24. B. Chu, Laser Light Scattering, 2nd ed. (Academic, Boston, 1991).
  25. S. Yip, “Rayleigh scattering in dilute gases,” J. Acoust. Soc. Am. 49, 941–949 (1971). [CrossRef]
  26. I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985). [CrossRef]
  27. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, CHEMKIN: A Fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore Calif., 1991).
  28. Institute of Physics, Special Issue on Particle Image Velocimetry, Meas. Sci. Technol. 8, (1997).
  29. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  30. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filter for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef]
  31. E. Voss, “Untersuchung zur Temperaturfernmessung durch Analyse der Rayleigh-Streuung mit Atomdampffiltern,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1992).
  32. J. N. Forkey, W. R. Lempert, R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997). [CrossRef]
  33. J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high-resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993). [CrossRef] [PubMed]
  34. D. Hofmann, “Zeit- und ortsaufgelöste Bestimmung der Temperatur- und Konzentrationsverteilung in technischen Verbrennungssystemen über die gefilterte Rayleigh Streuung (FRS),” B. Energie Verfahrenstechnik, 97.2 (1997).
  35. Y. A. Cengel, M. A. Boles, Thermodynamics: an Engineering Approach, 3rd ed. (WCB/McGraw-Hill, Boston, 1998).
  36. I. F. Golubev, Viscosity of gases and gas mixtures, translated from Russian by R. Kondor, D. Slutzkin, eds. (Israel Program for Scientific Translation Ltd., Jerusalem, Israel, 1970), p. 237.
  37. Verein Deutscher Ingenieure, Wärmeatlas, 5th ed. (VDI, Düsseldorf, Germany, 1988).
  38. K. Müller-Dethlefs, F. J. Weinberg, “Burning velocity measurement based on laser Rayleigh scattering,” in Proceedings of 17th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1978), pp. 985–992.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited