OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5423–5429

Distributed laser refrigeration

Anton Rayner, Madeleine Hirsch, Norman R. Heckenberg, and Halina Rubinsztein-Dunlop  »View Author Affiliations

Applied Optics, Vol. 40, Issue 30, pp. 5423-5429 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 250-µm-diameter fiber of ytterbium-doped ZBLAN (fluorine combined with Zr, Ba, La, Al, and Na) has been cooled from room temperature. We coupled 1.0 W of laser light from a 1013-nm diode laser into the fiber. We measured the temperature of the fiber by using both fluorescence techniques and a microthermocouple. These microthermocouple measurements show that the cooled fiber can be used to refrigerate materials brought into contact with it. This, in conjunction with the use of a diode laser as the light source, demonstrates that practical solid-state laser coolers can be realized.

© 2001 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.5690) Materials : Rare-earth-doped materials
(190.5650) Nonlinear optics : Raman effect
(350.5340) Other areas of optics : Photothermal effects

Original Manuscript: January 23, 2001
Revised Manuscript: June 5, 2001
Published: October 20, 2001

Anton Rayner, Madeleine Hirsch, Norman R. Heckenberg, and Halina Rubinsztein-Dunlop, "Distributed laser refrigeration," Appl. Opt. 40, 5423-5429 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pringsheim, “Zwei Bemerkungen über den Unterscheid von Lumineszenz-und Termperaturstreahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  2. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  3. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 3, 115–122 (1999). [CrossRef]
  4. R. Frey, F. Micheron, J. P. Pocholle, “Comparison of Peltier and anti-Stokes optical coolings,” J. Appl. Phys. 87, 4489–4498 (2000). [CrossRef]
  5. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
  6. H. Gauck, T. H. Gfoerer, M. J. Renn, E. A. Cornell, K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997). [CrossRef]
  7. E. Finkeissen, M. Potemski, P. Wyder, L. Viña, G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999). [CrossRef]
  8. J. L. Clark, G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996). [CrossRef] [PubMed]
  9. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–503 (1995). [CrossRef]
  10. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999). [CrossRef]
  11. C. E. Mungan, M. J. Buchwald, B. C. Edwards, R. I. Epstein, T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78, 1030–1033 (1997). [CrossRef]
  12. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999). [CrossRef]
  13. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000). [CrossRef] [PubMed]
  14. J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited