## Energetic and Optical Consequences in Isotropic Curved Space and Time

Applied Optics, Vol. 40, Issue 30, pp. 5452-5458 (2001)

http://dx.doi.org/10.1364/AO.40.005452

Acrobat PDF (130 KB)

### Abstract

In numerous media (nonlinear material, moving dielectrics, superfluids, Bose–Einstein condensates, and others) and different *in vacuo* states (nontrivial quantum electrodynamics *in vacuo*) matter or vacuum fluctuations modify light propagation in the same way that an effective gravitational field does. This nonlinear optical behavior affects not only the energy paths but also the form of the energetic invariant. However, such a function plays a key role when we try to develop a phenomenological kinetic theory for participating media. I analyze how modification of light propagation transforms the energetic invariant and modifies its transport inside a participating medium. A semianalytical method is presented to solve the radiative transfer equation for any spherically symmetric problems.

© 2001 Optical Society of America

**OCIS Codes**

(080.2710) Geometric optics : Inhomogeneous optical media

(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

(350.5500) Other areas of optics : Propagation

**Citation**

Philippe Ben-Abdallah, "Energetic and Optical Consequences in Isotropic Curved Space and Time," Appl. Opt. **40**, 5452-5458 (2001)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-30-5452

Sort: Year | Journal | Reset

### References

- L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
- U. Leonhardt and P. Piwnicki, “Optics of nonuniformly moving media,” Phys. Rev. A 60, 4301–4312 (1999).
- A. Burrows, T. Young, P. A. Pinto, R. Eastman, and T. A. Thompson, “Supernova neutrinos and a new algorithm for neutrino transport,” Astrophys. J. 539, 865–932 (2000).
- M. Sikora, M. C. Begelman, and M. J. Rees, “Comptonization of diffuse ambient radiation by a relativistic jet: the source of gamma rays from blazars?,” Astrophys. J. 421, 153–162 (1994).
- M. Novello, V. A. De Lorenci, J. M. Salim, and R. Klippert, “Geometrical aspects of light propagation in nonlinear electrodynamics,” Phys. Rev. D 61, 45001–45011 (2000).
- W. Dittrich and H. Gies, “Light propagation in nontrivial QED vacua,” Phys. Rev. D 58, 25004–25017 (1998).
- F. Dalfovo, S. Giorgini, L. P. Pitaevski, and S. Stringari, “Theory of trapped Bose-condensed gases,” Rev. Mod. Phys. 71, 463–532 (1999).
- W. G. Unruh, “Sonic analog of black holes and the effects of high frequencies on black hole evaporation,” Phys. Rev. D 51, 2827–2838 (1995).
- M. Visser, “Acoustic black holes: horizons, ergospheres, and hawking radiation,” Class. Quantum Grav. 15, 1767–1791 (1998).
- L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, “Sonic analog of gravitational black holes in Bose–Einstein condensates,” Phys. Rev. Lett. 85, 4643–4647 (2000).
- J. Plebanski, Lectures on Nonlinear Electrodynamics (Nordita, Copenhagen, 1968).
- U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett. 84, 822–825 (2000).
- M. Novello, V. A. De Lorenci, and E. Elbaz, “Some aspects of geometrical confinement,” Int. J. Mod. Phys. A. 13, 4539–4552 (1998).
- M. Novello and J. M. Salim, “Effective electromagnetic geometry,” Phys. Rev. D 63, 083511 (2001).
- M. M. Novak, “The effect of a nonlinear medium on electromagnetic waves,” Fortschr. Phys. 37, 125–159 (1989).
- V. A. De Lorenci and M. A. Souza, “Electromagnetic wave propagation inside a material medium: an effective geometry interpretation,” Phys. Lett. B 512, 417–422 (2001).
- M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1964).
- G. C. Pomraning, The Equations of Radiation Hydrodynamics (Pergamon, London, 1973).
- P. Ben-Abdallah and V. Le Dez, “Energetic and optical consequences of light distortion inside an expanding isotropic sphere,” J. Opt. Soc. Am. B (to be published).
- P. Ben-Abdallah, M. Sakami, V. Le Dez, J. B. Saulnier, and A. Charrette, “Optical remote sensing inside an inhomogeneous axisymmetric medium: the absorption field measurement,” Appl. Opt. 39, 411–417 (2000).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.