OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5452–5458

Energetic and optical consequences in isotropic curved space and time

Philippe Ben-Abdallah  »View Author Affiliations

Applied Optics, Vol. 40, Issue 30, pp. 5452-5458 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In numerous media (nonlinear material, moving dielectrics, superfluids, Bose–Einstein condensates, and others) and different in vacuo states (nontrivial quantum electrodynamics in vacuo) matter or vacuum fluctuations modify light propagation in the same way that an effective gravitational field does. This nonlinear optical behavior affects not only the energy paths but also the form of the energetic invariant. However, such a function plays a key role when we try to develop a phenomenological kinetic theory for participating media. I analyze how modification of light propagation transforms the energetic invariant and modifies its transport inside a participating medium. A semianalytical method is presented to solve the radiative transfer equation for any spherically symmetric problems.

© 2001 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(350.5500) Other areas of optics : Propagation

Original Manuscript: December 15, 2000
Revised Manuscript: June 6, 2001
Published: October 20, 2001

Philippe Ben-Abdallah, "Energetic and optical consequences in isotropic curved space and time," Appl. Opt. 40, 5452-5458 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999). [CrossRef]
  2. U. Leonhardt, P. Piwnicki, “Optics of nonuniformly moving media,” Phys. Rev. A 60, 4301–4312 (1999). [CrossRef]
  3. A. Burrows, T. Young, P. A. Pinto, R. Eastman, T. A. Thompson, “Supernova neutrinos and a new algorithm for neutrino transport,” Astrophys. J. 539, 865–932 (2000). [CrossRef]
  4. M. Sikora, M. C. Begelman, M. J. Rees, “Comptonization of diffuse ambient radiation by a relativistic jet: the source of gamma rays from blazars?,” Astrophys. J. 421, 153–162 (1994). [CrossRef]
  5. M. Novello, V. A. De Lorenci, J. M. Salim, R. Klippert, “Geometrical aspects of light propagation in nonlinear electrodynamics,” Phys. Rev. D 61, 45001–45011 (2000). [CrossRef]
  6. W. Dittrich, H. Gies, “Light propagation in nontrivial QED vacua,” Phys. Rev. D 58, 25004–25017 (1998). [CrossRef]
  7. F. Dalfovo, S. Giorgini, L. P. Pitaevski, S. Stringari, “Theory of trapped Bose-condensed gases,” Rev. Mod. Phys. 71, 463–532 (1999). [CrossRef]
  8. W. G. Unruh, “Sonic analog of black holes and the effects of high frequencies on black hole evaporation,” Phys. Rev. D 51, 2827–2838 (1995). [CrossRef]
  9. M. Visser, “Acoustic black holes: horizons, ergospheres, and hawking radiation,” Class. Quantum Grav. 15, 1767–1791 (1998). [CrossRef]
  10. L. J. Garay, J. R. Anglin, J. I. Cirac, P. Zoller, “Sonic analog of gravitational black holes in Bose–Einstein condensates,” Phys. Rev. Lett. 85, 4643–4647 (2000). [CrossRef] [PubMed]
  11. J. Plebanski, Lectures on Nonlinear Electrodynamics (Nordita, Copenhagen, 1968).
  12. U. Leonhardt, P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett. 84, 822–825 (2000). [CrossRef] [PubMed]
  13. M. Novello, V. A. De Lorenci, E. Elbaz, “Some aspects of geometrical confinement,” Int. J. Mod. Phys. A. 13, 4539–4552 (1998). [CrossRef]
  14. M. Novello, J. M. Salim, “Effective electromagnetic geometry,” Phys. Rev. D 63, 083511 (2001). [CrossRef]
  15. M. M. Novak, “The effect of a nonlinear medium on electromagnetic waves,” Fortschr. Phys. 37, 125–159 (1989). [CrossRef]
  16. V. A. De Lorenci, M. A. Souza, “Electromagnetic wave propagation inside a material medium: an effective geometry interpretation,” Phys. Lett. B 512, 417–422 (2001). [CrossRef]
  17. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).
  18. G. C. Pomraning, The Equations of Radiation Hydrodynamics (Pergamon, London, 1973).
  19. P. Ben-Abdallah, V. Le Dez, “Energetic and optical consequences of light distortion inside an expanding isotropic sphere,” J. Opt. Soc. Am. B (to be published).
  20. P. Ben-Abdallah, M. Sakami, V. Le Dez, J. B. Saulnier, A. Charrette, “Optical remote sensing inside an inhomogeneous axisymmetric medium: the absorption field measurement,” Appl. Opt. 39, 411–417 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited