OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5463–5473

Airborne interferometer for atmospheric emission and solar absorption

David W. Keith, John A. Dykema, Haijun Hu, Larry Lapson, and James G. Anderson  »View Author Affiliations

Applied Optics, Vol. 40, Issue 30, pp. 5463-5473 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 µm with a resolution of 0.7 cm-1. The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA’s calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ∼0.5 K in the mid-infrared.

© 2001 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.3920) Atmospheric and oceanic optics : Meteorology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: November 16, 2000
Revised Manuscript: June 11, 2001
Published: October 20, 2001

David W. Keith, John A. Dykema, Haijun Hu, Larry Lapson, and James G. Anderson, "Airborne interferometer for atmospheric emission and solar absorption," Appl. Opt. 40, 5463-5473 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. E. Revercomb, D. D. LaPorte, W. L. Smith, H. Buijs, D. G. Murcray, F. J. Murcray, L. A. Sromovsky, “High-altitude aircraft measurements of upwelling IR radiance: prelude to FTIR from geosynchronous satellite,” Mikrochim. Acta 2, 439–444 (1988). [CrossRef]
  2. D. Cousins, W. L. Smith, “National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I),” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, Fischer, eds., Proc SPIE3127, 323–331 (1997).
  3. D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995). [CrossRef]
  4. G. C. Toon, “The JPL MkIV interferometer,” Opt. Photon. News 2, 19–21 (1991). [CrossRef]
  5. L. L. Strow, D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, R. O. Knuteson, “Impact of a new water vapor continuum and line shape model on observed high resolution infrared radiances,” J. Quant. Spectrosc. Radiat. Transfer 59, 303–317 (1998). [CrossRef]
  6. A. Sinha, J. E. Harries, “The Earth’s clear-sky radiation budget and water vapor absorption in the far infrared,” J. Clim. 10, 1601–1614 (1997). [CrossRef]
  7. H. Hu, J. Dykema, D. Keith, L. Lapson, J. Anderson, R. O. Knuteson, W. L. Smith, “Intercomparison of atmospheric radiance measurements by two Fourier transform spectrometers flown on the NASA ER-2,” in IRS2000: Current Problems in Atmospheric Radiation, W. L. Smith, Y. M. Timofeyev, eds. (Deepak, Hampton, Va., 2001).
  8. D. W. Keith, J. G. Anderson, “Accurate spectrally resolved infrared radiance observation from space: implications for the detection of decade-to-century-scale climatic change,” J. Clim. 14, 979–990 (2001). [CrossRef]
  9. R. J. Chandos, R. E. Chandos, “Radiometric properties of isothermal diffuse wall cavity sources,” Appl. Opt. 13, 2142–2151 (1974). [CrossRef] [PubMed]
  10. T. Hawat, C. Camry-Peyret, R. Torguet, “Suntracker for atmospheric remote sensing,” Opt. Eng. 37, 1633–1642 (1998). [CrossRef]
  11. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier-transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  12. H. Hu, L. L. Strow, D. W. Keith, J. G. Anderson, “Validation of radiative transfer for atmospheric temperature sensing,” in Tenth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1999). Other representative data and analysis can be found at http://www.arp.harvard.edu/sci/rad .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited