Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering and internal fields of a microsphere that contains a saturable absorber: finite-difference time-domain simulations

Not Accessible

Your library or personal account may give you access

Abstract

Illumination intensities that are used to induce scattering and fluorescence in aerosols can be large enough to cause variations in the refractive index. Methods used to calculate the scattering from homogeneous particles may not be valid for these systems. We use the finite-difference time-domain method and an iterative technique to model scattering by microspheres that contain a saturable absorber. We illustrate this technique by calculating the scattering from spheres that contain tryptophan. We show the Mueller scattering matrices along with the internal intensity distributions for different incident intensities. The backscattering increases as the illumination intensity becomes large enough to saturate the absorption in regions of the sphere.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity

Steven C. Hill, Ronald G. Pinnick, Stanley Niles, Nicholas F. Fell, Yong-Le Pan, Jerold Bottiger, Burt V. Bronk, Stephen Holler, and Richard K. Chang
Appl. Opt. 40(18) 3005-3013 (2001)

Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium

Wenbo Sun, Norman G. Loeb, and Qiang Fu
Appl. Opt. 41(27) 5728-5743 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.