OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 30 — Oct. 20, 2001
  • pp: 5530–5538

Equivalent-time electro-optic sampling by use of a picosecond laser with a voltage-controlled optoelectronic pulse-delay tuning circuit

Gong-Ru Lin and Yung-Cheng Chang  »View Author Affiliations


Applied Optics, Vol. 40, Issue 30, pp. 5530-5538 (2001)
http://dx.doi.org/10.1364/AO.40.005530


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a delay-line-free electro-optic sampling (EOS) system by using a novel ultrafast laser with a voltage-controlled pulse-delay tuning circuit (PDTC). The digital PDTC was designed as a substitute for a conventional optomechanical delay line in the EOS system, which facilitates the theoretical phase-tuning range of 4π. The maximum delay time, tuning gain, and resolution of the PDTC are 3.6 ns (1.8 periods), 0.54 ns/V, and 0.2 ps, respectively. Arbitrary waveforms generated from microwave synthesizers, electrical pulse generators, and frequency prescalars are successfully sampled by use of this system, with a less than 8% deviation in the results.

© 2001 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(320.0320) Ultrafast optics : Ultrafast optics
(320.7160) Ultrafast optics : Ultrafast technology

History
Original Manuscript: April 17, 2001
Revised Manuscript: June 19, 2001
Published: October 20, 2001

Citation
Gong-Ru Lin and Yung-Cheng Chang, "Equivalent-time electro-optic sampling by use of a picosecond laser with a voltage-controlled optoelectronic pulse-delay tuning circuit," Appl. Opt. 40, 5530-5538 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-30-5530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For a review, see T. Gheewaia, “The Josephson technology,” Proc. IEEE 70, 26–34 (1982). [CrossRef]
  2. See, for example, F. Capasso, W. T. Tsang, C. G. Bethea, B. F. Levine, “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett. 42, 93–95 (1983). [CrossRef]
  3. See, for example, F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, “New transient electrical polarization phenomena in sawtooth superlattice,” Phys. Rev. Lett. 51, 2318–2321 (1983). [CrossRef]
  4. D. H. Auston, “Picosecond photoconductors: physical properties and applications,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 73–117. [CrossRef]
  5. P. Downey, B. Schwartz, “Picosecond photoresponse in 3He+ bombarded InP photoconductors,” Appl. Phys. Lett. 44, 207–209 (1984). [CrossRef]
  6. J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. QE-19, 664–667 (1983). [CrossRef]
  7. G. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronics, G. A. Mourou, ed., Proc. SPIE439, 142–148 (1983). [CrossRef]
  8. J. A. Valdmanis, G. A. Mourou, “Subpicosecond electrical sampling,” in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, Orlando, Fla., 1984), pp. 249–270. [CrossRef]
  9. R. C. Alferness, N. P. Economou, L. L. Buhl, “Picosecond optical sampling technique for measuring the speed of fast electro-optic switch/modulators,” Appl. Phys. Lett. 37, 597–599 (1980). [CrossRef]
  10. D. H. Auston, A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972). [CrossRef]
  11. P. LeFur, D. H. Auston, “A kilovolt optoelectronic switch and Pockels cell,” Appl. Phys. Lett. 28, 21–23 (1976). [CrossRef]
  12. J. A. Valdmanis, G. A. Mourou, C. W. Gabel, “Picosecond electrooptic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982). [CrossRef]
  13. J. A. Valdmanis, “Subpicosecond electro-optic sampling,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1983).
  14. M. Y. Frankel, J. F. Whitaker, G. A. Mourou, “Optoelectronic transient characterization of ultrafast devices,” IEEE J. Quantum Electron. 28, 2313–2324 (1992). [CrossRef]
  15. M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron. Devices 37, 2493–2497 (1990). [CrossRef]
  16. K. Yang, G. David, S. V. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Tech. 46, 2338–2343 (1998). [CrossRef]
  17. T. Löffler, T. Pfeifer, H. G. Roskos, H. Kurz, D. W. van der Weide, “Stable optoelectronic detection of free-running microwave signals with 150-GHz bandwidth,” Microelectron. Eng. 31, 397–408 (1996). [CrossRef]
  18. Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). [CrossRef]
  19. S.-G. Park, M. R. Melloch, A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999). [CrossRef]
  20. F. Pockels, Lehrbuch der Kristalloptic, (Teubner, Leipzig, 1906).
  21. C. K. Johnson, J. Qian, “Picosecond laser timing by rf phase shifting,” Rev. Sci. Instrum. 61, 1158–1160 (1990). [CrossRef]
  22. P. V. Brennan, A. W. Houghton, “Phased array beam steering using phased-locked loops,” Electron. Lett. 26, 165–166 (1990). [CrossRef]
  23. G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, C.-L. Pan, “Broad-band (≥20 GHz) laser-diode-based optoelectronic microwave phase shifter,” IEEE Trans. Microwave Theory Tech. 46, 1419–1426 (1998). [CrossRef]
  24. G.-R. Lin, Y.-C. Chang, “A DC-voltage-controlled phase-tuning technology for optoelectronic microwave signals,” Microwave Opt. Technol. Lett. 26, 98–100 (2000). [CrossRef]
  25. G.-R. Lin, Y.-C. Chang, “Demonstration and optimization of an optoelectronic phase-locked phase shifter for optical microwave signals,” IEEE Photon. Technol. Lett. 12, 1555–1557 (2000). [CrossRef]
  26. G.-R. Lin, “Optoelectronic delay-time controller for laser pulses,” Opt. Lett. 25, 799–801 (2000). [CrossRef]
  27. H.-H. Wu, G.-R. Lin, C.-L. Pan, “Optoelectronic phase tracking and electrooptic sampling of free-running microwave signals up to 20 GHz in a laser-diode-based system,” IEEE Photon. Technol. Lett. 7, 670–672 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited