OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5588–5591

Fabrication of a submicrometer crystalline structure by thermoplastic holography

Xia Wang, Huimin Su, Lingzhi Zhang, Yongjun He, Xiguang Zheng, and Hezhou Wang  »View Author Affiliations

Applied Optics, Vol. 40, Issue 31, pp. 5588-5591 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report what we believe to be a novel method for fabrication of permanent submicrometer periodic structures by interference laser fields. The new method is holographic lithography combined with laser-induced thermoplastification. The crystalline structures that result from this new method not only can be maintained permanently after the optical field is evacuated but also can be rewritten by exposure of an inteference laser field for the second time. The process of fabrication is rapid, convenient, and effective.

© 2001 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(090.0090) Holography : Holography
(160.2900) Materials : Optical storage materials

Original Manuscript: September 15, 2000
Revised Manuscript: May 2, 2001
Published: November 1, 2001

Xia Wang, Huimin Su, Lingzhi Zhang, Yongjun He, Xiguang Zheng, and Hezhou Wang, "Fabrication of a submicrometer crystalline structure by thermoplastic holography," Appl. Opt. 40, 5588-5591 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical field,” Science 249, 749–754 (1990). [CrossRef] [PubMed]
  2. W. Hu, H. Q. Li, B. Y. Cheng, J. H. Yang, Z. L. Li, J. R. Xu, D. Z. Zhang, “Planar optical lattice of TiO2 particles,” Opt. Lett. 20, 964–966 (1995). [CrossRef]
  3. V. Berger, O. Gauthier-Lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997). [CrossRef]
  4. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turerfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000). [CrossRef] [PubMed]
  5. E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band gap structure: the face-centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991). [CrossRef] [PubMed]
  6. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998). [CrossRef]
  8. E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998). [CrossRef]
  9. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275, 1284–1286 (1997). [CrossRef] [PubMed]
  10. Y. S. Chan, C. T. Chan, Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998). [CrossRef]
  11. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited