OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5632–5637

Nanometer measurement with a dual Fabry–Perot interferometer

Benyong Chen, Ruogu Zhu, Zhaotong Wu, Dacheng Li, and Songling Guo  »View Author Affiliations

Applied Optics, Vol. 40, Issue 31, pp. 5632-5637 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of analyzing sinusoidal phase-modulating Fabry–Perot interferometry, a method, believed to be novel, is proposed for achieving nanometer measurement accuracy by measuring the time interval between equal amplitudes of the two elementary frequency signals of the transmitted intensities of a dual Fabry–Perot interferometer. A nanometer measurement system based on the method was designed and tested. The experimental results show that the displacement resolution of the system is 0.32 nm at a 1-kHz modulating signal.

© 2001 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

Original Manuscript: January 4, 2001
Revised Manuscript: May 9, 2001
Published: November 1, 2001

Benyong Chen, Ruogu Zhu, Zhaotong Wu, Dacheng Li, and Songling Guo, "Nanometer measurement with a dual Fabry–Perot interferometer," Appl. Opt. 40, 5632-5637 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Wang, S. Zhang, Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Perot interferometer,” Sens. Actuators A 69, 134–138 (1998). [CrossRef]
  2. T. Li, R. G. May, A. Wang, R. O. Claus, “An optical scanning fiber dual-interferometer system for measuring small distance,” Acta Metrolog. Sin. 19, 9–14 (1998).
  3. A. Araya, S. Telada, K. Tochikubo, S. Taniguchi, R. Takahashi, K. Kawabe, D. Tatsumi, T. Yamazaki, S. Kawamura, S. Miyoki, S. Moriwaki, M. Musha, S. Nagano, M. Fujimoto, K. Horikoshi, N. Mio, Y. Naito, A. Takamori, K. Yamamoto, “Absolute-length determination of a long-baseline Fabry–Perot cavity by means of resonating modulation sidebands,” Appl. Opt. 38, 2848–2856 (1999). [CrossRef]
  4. P. T. Woods, K. C. Shotton, W. R. C. Rowley, “Frequency determination of visible laser light by interferometric comparison with upconverted CO2 laser radiation,” Appl. Opt. 17, 1048–1053 (1978). [CrossRef] [PubMed]
  5. K. S. Repasky, J. L. Carlsten, “Simple method for measuring frequency chirps with a Fabry–Perot interferometer,” Appl. Opt. 39, 5500–5504 (2000). [CrossRef]
  6. S. Sato, M. Ohashi, M. Fujimoto, M. Fukushima, K. Waseda, S. Miyoki, N. Mavalvala, H. Yamamoto, “High-gain power recycling of a Fabry–Perot Michelson interferometer for a gravitational-wave antenna,” Appl. Opt. 39, 4616–4620 (2000). [CrossRef]
  7. T. T. Lyons, M. W. Regehr, F. J. Raab, “Shot noise in gravitational-wave detectors with Fabry–Perot arms,” Appl. Opt. 39, 6761–6770 (2000). [CrossRef]
  8. S. J. Bentley, R. W. Boyd, W. E. Butler, A. C. Melissinos, “Measurement of the thermal contribution to the nonlinear refractive index of air at 1064 nm,” Opt. Lett. 25, 1192–1194 (2000). [CrossRef]
  9. T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000). [CrossRef]
  10. M. Schmidt, N. Furstenau, “Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999). [CrossRef]
  11. S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white-light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999). [CrossRef]
  12. A. Courteville, Y. Salvade, R. Dandliker, “High-precision velocimetry: optimization of a Fabry–Perot interferometer,” Appl. Opt. 39, 1521–1526 (2000). [CrossRef]
  13. T. K. Gangopadhyay, P. J. Henderson, “Vibration: history and measurement with an extrinsic Fabry–Perot sensor with solid-state laser interferometry,” Appl. Opt. 38, 2471–2477 (1999). [CrossRef]
  14. R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, “Fiber-optic pressure sensors for internal combustion engines,” Appl. Opt. 33, 1315–1320 (1994). [CrossRef] [PubMed]
  15. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry–Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997). [CrossRef]
  16. G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992). [CrossRef]
  17. O. Sasaki, H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25, 3137–3140 (1986). [CrossRef] [PubMed]
  18. O. Sasaki, H. Okazaki, M. Sakai, “Sinusoidal phase modulating interferometry using the integrating-bucket method,” Appl. Opt. 26, 1089–1093 (1987). [CrossRef] [PubMed]
  19. B. Chen, “Research on the technique of nano-measurement based on a laser dual Fabry–Perot interferometer,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited