OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5638–5642

Integrated high-power electro-optic lens and large-angle deflector

Kevin T. Gahagan, David A. Scrymgeour, Joanna L. Casson, Venkatraman Gopalan, and Jeanne M. Robinson  »View Author Affiliations

Applied Optics, Vol. 40, Issue 31, pp. 5638-5642 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical discussion and experimental demonstration of what to our knowledge is a novel integrated electro-optic lens and beam deflector fabricated in lithium tantalate. The cylindrical lens collimates Gaussian beams as small as 4 µm in diameter, whereas the independently controlled deflector is capable of scanning the collimated beam through an angular range of nearly 20°.

© 2001 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.2100) Materials : Electro-optical materials
(220.4000) Optical design and fabrication : Microstructure fabrication

Original Manuscript: December 1, 2000
Revised Manuscript: July 13, 2001
Published: November 1, 2001

Kevin T. Gahagan, David A. Scrymgeour, Joanna L. Casson, Venkatraman Gopalan, and Jeanne M. Robinson, "Integrated high-power electro-optic lens and large-angle deflector," Appl. Opt. 40, 5638-5642 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992). [CrossRef]
  2. Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994). [CrossRef]
  3. C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996). [CrossRef]
  4. C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996). [CrossRef]
  5. V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photon. Technol. Lett. 8, 1704–1706 (1996). [CrossRef]
  6. J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photon. Technol. Lett. 8, 1486–1488 (1996). [CrossRef]
  7. M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996). [CrossRef]
  8. N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum. Electron. 33, 152–163 (1997). [CrossRef]
  9. M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997). [CrossRef]
  10. V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998). [CrossRef]
  11. J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electrooptic beam scanners: experiment,” IEEE Photon. Technol. Lett. 11, 66–68 (1999). [CrossRef]
  12. K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999). [CrossRef]
  13. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 28–30, 99.
  14. Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999). [CrossRef]
  15. J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968). [CrossRef]
  16. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  17. M. D. Feit, J. A. Fleck, “Light-propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef] [PubMed]
  18. V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996). [CrossRef]
  19. Applied Electro-Optics Corporation, Pittsburgh, Pa.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited