Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Objective-type dark-field illumination for scattering from microbeads

Not Accessible

Your library or personal account may give you access

Abstract

We introduce a method for detecting and tracking small particles in a solution near a surface. The method is based on blocking the backreflected illumination beam in an objective-type total internal reflection microscope, leaving unhindered the light scattered by the particles and resulting in dark-field illumination. Using this method, we tracked the motion of 60-nm polystyrene beads with a signal-to-noise ratio of 6 and detected 20-nm gold particles with a signal-to-noise ratio of 5. We illustrate the method’s use by following the Brownian motion of small beads attached by short DNA tethers to a substrate.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles

F. Verpillat, F. Joud, P. Desbiolles, and M. Gross
Opt. Express 19(27) 26044-26055 (2011)

Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering

Adam Wax, Changhuei Yang, Ramachandra R. Dasari, and Michael S. Feld
Appl. Opt. 40(24) 4222-4227 (2001)

Enhanced sensitivity in dark-field microscopy by optimizing the illumination angle

Michael A. Taylor and Warwick P. Bowen
Appl. Opt. 52(23) 5718-5723 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.