OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5693–5707

New feasibilities for characterizing rough surfaces by optical-correlation techniques

Oleg V. Angelsky, Peter P. Maksimyak, Vasyl V. Ryukhtin, and Steen G. Hanson  »View Author Affiliations


Applied Optics, Vol. 40, Issue 31, pp. 5693-5707 (2001)
http://dx.doi.org/10.1364/AO.40.005693


View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

New feasibilities are considered for the optical-correlation diagnostics of rough surfaces with different distributions of irregularities. The influence of deviations of the height surface roughness distribution from a Gaussian probability distribution on the accuracy of optical analysis is discussed. Possibilities for the optical diagnostics of fractal surface structures are shown, and a set of statistical and dimensional parameters of the scattered fields for surface roughness diagnostics is determined. Finally, a multifunctional measuring device for estimating these parameters is proposed.

© 2001 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(240.6700) Optics at surfaces : Surfaces

History
Original Manuscript: December 12, 2000
Revised Manuscript: June 14, 2001
Published: November 1, 2001

Citation
Oleg V. Angelsky, Peter P. Maksimyak, Vasyl V. Ryukhtin, and Steen G. Hanson, "New feasibilities for characterizing rough surfaces by optical-correlation techniques," Appl. Opt. 40, 5693-5707 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-31-5693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).
  2. J. M. Bennett, “Surface roughness measurement,” in Optical Measurement Techniques and Applications, P. K. Rastogi, ed. (Artech House, Norwood, Mass., 1997), pp. 341–367.
  3. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, Bristol, UK, 1991).
  4. O. V. Angelsky, P. P. Maksimyak, S. Hanson, The Use of Optical-Correlation Techniques for Characterizing Scattering Object and Media (SPIE Press, Bellingham, Wash., 1999), PM71.
  5. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, London, 1963).
  6. H. E. Bennett, J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51, 123–129 (1961). [CrossRef]
  7. J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979). [CrossRef]
  8. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970). [CrossRef] [PubMed]
  9. T. V. Vorburger, E. Marx, T. R. Lettieri, “Regimes of surface roughness measurable with scattering,” Appl. Opt. 32, 3401–3408 (1993). [CrossRef] [PubMed]
  10. S. M. Rytov, Y. A. Kravtsov, V. I. Tatarsky, Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).
  11. E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988). [CrossRef] [PubMed]
  12. E. L. Church, “Comments on the correlation length,” in Surface Characterization and Testing, K. Creath, ed., Proc. SPIE680, 102–111 (1986). [CrossRef]
  13. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982), Chap. 6, pp. 37–57; Chap. 39, pp. 362–365.
  14. E. Feder, Fractals (Plenum, New York, 1988).
  15. K. Nakagawa, T. Yoshimura, T. Minemoto, “Surface-roughness measurement using Fourier transformation of doubly scattered speckle pattern,” Appl. Opt. 32, 4898–4903 (1993). [CrossRef] [PubMed]
  16. A. Dogariu, J. Uozumi, T. Asakura, “Sources of error in optical measurements of fractal dimension,” Pure Appl. Opt. 2, 339–350 (1993). [CrossRef]
  17. K. J. Falconer, Fractal Geometry (Wiley, New York, 1990).
  18. D. A. Zimnyakov, V. V. Tuchin, “Fractality of speckle intensity fluctuations,” Appl. Opt. 35, 4325–4333 (1996). [CrossRef] [PubMed]
  19. J. F. Nye, Natuaral Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, Bristol, UK, 1999).
  20. O. V. Angelsky, P. P. Maksimyak, “Optical diagnostics of random phase objects,” Appl. Opt. 29, 2894–2898 (1990). [CrossRef] [PubMed]
  21. Yu. I. Neymark, P. S. Landa, Stochastic and Chaotic Oscillations (Nauka, Moscow, 1987).
  22. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979). [CrossRef]
  23. E. L. Church, P. Z. Takacs, “Effect nonvanishing tip size in mechanical profile measurements,” in Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection, P. Grover, ed., Proc. SPIE1332, 504–514 (1991).
  24. K. A. O’Donnell, “Effect of finite stylus width in surface contact profilometry,” Appl. Opt. 32, 4922–4928 (1993). [CrossRef]
  25. R. S. Sayles, T. R. Thomas, “Surface topography as a nonstationary random process,” Nature (London) 271, 431–433 (1978). [CrossRef]
  26. A. Arneodo, “Wavelet analysis of fractals,” in Wavelets, G. Erlebacher, M. Y. Hussaini, L. M. Jameson, eds. (Oxford University, Oxford, UK, 1996), pp. 352–497.
  27. H.-O. Peitgen, D. Saupe, eds., The Science of Fractal Images (Springer-Verlag, New York, 1988).
  28. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  29. K. S. Clarke, “Computation of the fractal dimention of topographic surfaces using the triangular prism surface area method,” Comput. Geosci. 12, 113–122 (1986). [CrossRef]
  30. B. Dubuc, J. F. Quiniuo, C. Roques-Carmes, C. Tricot, “Evaluation the fractal dimensions of profiles,” Phys. Rev. 39, 1500–1512 (1989). [CrossRef]
  31. A. Dogariu, J. Uozumi, T. Asakura, “Angular power spectra of fractal structures,” J. Mod. Opt. 41, 729–738 (1994). [CrossRef]
  32. O. V. Angelsky, P. P. Maksimyak, T. O. Perun, “Optical correlation method for measuring spatial complexity in optical fields,” Opt. Lett. 18, 90–92 (1993). [CrossRef] [PubMed]
  33. O. V. Angelsky, P. P. Maksimyak, T. O. Perun, “Dimensionality in optical fields and signals,” Appl. Opt. 32, 6066–6071 (1993). [CrossRef] [PubMed]
  34. N. H. Packard, J. P. Grutchfield, J. D. Farmer, P. S. Shaw, “Geometry from a time series,” Opt. Lett. 45, 712–716 (1980).
  35. F. Takens, “Detecting strange attractors in turbulence,” Lect. Notes Math. 898, 366–381 (1981). [CrossRef]
  36. O. V. Angelsky, P. P. Maksimyak, “Optical diagnostics of slightly rough surfaces,” Appl. Opt. 30, 140–143 (1992). [CrossRef]
  37. O. V. Angelsky, P. P. Maksimyak, “Polarization-interference measurement of phase-inhomogeneous objects,” Appl. Opt. 31, 4417–4419 (1992). [CrossRef] [PubMed]
  38. O. V. Angelsky, P. P. Maksimyak, “Optical correlation measurements of the structure parameters of random and fractal objects,” Meas. Sci. Technol. 9, 1682–1693 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited