OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5742–5747

Sensitive disk resonator photonic biosensor

Robert W. Boyd and John E. Heebner  »View Author Affiliations

Applied Optics, Vol. 40, Issue 31, pp. 5742-5747 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a photonic device based on a high-finesse, whispering-gallery-mode disk resonator that can be used for the detection of biological pathogens. This device operates by means of monitoring the change in transfer characteristics of the disk resonator when biological materials fall onto its active area. High sensitivity is achieved because the light wave interacts many times with each pathogen as a consequence of the resonant recirculation of light within the disk structure. Specificity of the detected substance can be achieved when a layer of antibodies or other binding material is deposited onto the active area of the resonator. Formulas are presented that allow the sensitivity of the device to be quantified and that show that, under optimum conditions, as few as 100 molecules can be detected.

© 2001 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.3990) Optical devices : Micro-optical devices

Original Manuscript: May 7, 2001
Revised Manuscript: August 1, 2001
Published: November 1, 2001

Robert W. Boyd and John E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. W. Christopher, T. J. Cielak, J. A. Pavlin, E. M. Eitzen, “Biological warfare, a historical perspective,” J. Am. Med. Assoc. 278, 412–417 (1997). [CrossRef]
  2. J. W. Hall, A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. (Winston–Salem, N.C.) 38, 1623–1631 (1992).
  3. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21, 618–620 (1996). [CrossRef] [PubMed]
  4. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16, 583–592 (1998). [CrossRef]
  5. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225 (1991). [CrossRef]
  6. A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997). [CrossRef]
  7. A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314–3320 (2000). [CrossRef]
  8. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  9. Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–74 (1993). [CrossRef]
  10. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992). [CrossRef] [PubMed]
  11. J. Popp, M. H. Fields, R. K. Chang, “Q-switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997). [CrossRef]
  12. S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991). [CrossRef] [PubMed]
  13. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998). [CrossRef]
  14. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  15. C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998). [CrossRef]
  16. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A. 137, 393–397 (1989). [CrossRef]
  17. F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
  18. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980). [CrossRef]
  19. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in micro-droplets,” Phys. Rev. Lett. 67, 437–440 (1991). [CrossRef] [PubMed]
  20. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998). [CrossRef]
  21. S. Blair, Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40, 570–582 (2001). [CrossRef]
  22. L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910). [CrossRef]
  23. V. B. Braginsky, V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).
  24. Note that, in the absence of absorption, the buildup factor B is related to the finesse ℱ often used to describe optical resonators through the relation B = (2/π)ℱ.
  25. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  26. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997). [CrossRef] [PubMed]
  27. S. Arnold, C. T. Liu, W. B. Whitten, J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420–422 (1991). [CrossRef] [PubMed]
  28. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995). [CrossRef] [PubMed]
  29. J.-P. Laine, B. E. Little, H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999). [CrossRef]
  30. M. Cai, O. Painter, K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-galley mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  31. B. E. Little, S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, 24–29 (2000). [CrossRef]
  32. B. L. N. Salmaso, G. J. Puppels, P. J. Caspers, R. Floris, R. Wever, J. Greve, “Resonance Raman microspectroscopic characterization of eosinophilic peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994). [CrossRef] [PubMed]
  33. J. E. Heebner, R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999). [CrossRef]
  34. B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996). [CrossRef] [PubMed]
  35. C. A. Rowe, L. M. Tender, M. K. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, F. S. Ligler, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes,” Anal. Chem. 71, 3846–3852 (1999). [CrossRef] [PubMed]
  36. We obtained the value σ = 2 × 10-16 cm2 by converting the measured value of the optical density to an absorption cross section. See H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, R. F. B. Turner, “Measurement of some small molecule and peptide neurotransmitters in-vitro using a fiber-optics probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92, 15–24 (1999). These authors measure an optical density of the order of 0.5 at a wavelength of 205 nm for a 1-cm path length through a 10-µM solution of dopamine. An optical density of 0.5 implies that the quantity αL is of the order of unity, where α is the absorption cross section and L is the path length, or that α is of the order of 1/cm. The absorption coefficient can be represented as α = Nσ, where N is the molecular number density and σ is the absorption cross section. Recall that a 1-M solution contains 6 × 1023 molecules/l, or 6 × 1020 molecules/ml. Thus a 10-µM solution contains 6 × 1015 molecules/ml or a number density of molecules of N = 6 × 1015 cm-3. The molecular absorption cross section is thus given by σ = 2 × 10-16 cm2 for dopamine.
  37. It should be noted that buildup factors as large as 109 have been observed, although in geometries less complicated than that of the proposed biosensor. See, for example, Ref. 25.
  38. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  39. A. Taflove, S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).
  40. S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited