OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 31 — Nov. 1, 2001
  • pp: 5755–5769

Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging

Yaling Pei, Harry L. Graber, and Randall L. Barbour  »View Author Affiliations


Applied Optics, Vol. 40, Issue 31, pp. 5755-5769 (2001)
http://dx.doi.org/10.1364/AO.40.005755


View Full Text Article

Enhanced HTML    Acrobat PDF (5216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical measurements of tissue can be performed in discrete, time-averaged, and time-varying data collection modes. This information can be evaluated to yield estimates of either absolute optical coefficient values or some relative change in these values compared with a defined state. In the case of time-varying data, additional analysis can be applied to define various dynamic features. Here we have explored the accuracy with which such information can be recovered from dense scattering media using linear perturbation theory, as a function of the accuracy of the reference medium that serves as the initial guess. Within the framework of diffusion theory and a first-order solution, we have observed the following inequality regarding the sensitivity of computed measures to inaccuracy in the reference medium: Absolute measures ≫ relative measures > dynamic measures. In fact, the fidelity of derived dynamic measures was striking; we observed that accurate measures of dynamic behavior could be defined even if the quality of the image data from which these measures were derived was comparatively modest. In other studies we identified inaccuracy in the estimates of the reference detector values, and not to corresponding errors in the image operators, as the primary factor responsible for instability of absolute measures. The significance of these findings for practical imaging studies of tissue is discussed.

© 2001 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(100.2980) Image processing : Image enhancement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4730) Medical optics and biotechnology : Optical pathology
(170.5380) Medical optics and biotechnology : Physiology

History
Original Manuscript: December 19, 2000
Revised Manuscript: May 29, 2001
Published: November 1, 2001

Citation
Yaling Pei, Harry L. Graber, and Randall L. Barbour, "Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging," Appl. Opt. 40, 5755-5769 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-31-5755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense scattering media: derivation and evaluation of imaging operators,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 121–143.
  2. R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.
  3. S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 35–64.
  4. R. L. Barbour, H. L. Graber, J. Chang, S.-L. S. Barbour, P. C. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
  5. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Simultaneous scattering and absorption images of heterogeneous media using diffusive waves within the Rytov approximation,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2839, 320–327 (1995). [CrossRef]
  6. R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, T. Panetta, “Spatiotemporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on in vivo Optical Imaging at the NIH, 1999 (Optical Society of America, Washington, D.C., 2000), pp. 161–166.
  7. H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, T. Panetta, R. L. Barbour, “Spatio-temporal imaging of vascular reactivity,” in Physiology and Function from Multidimensional Imaging, A. V. Clough, C.-T. Chen, eds., Proc. SPIE3978, 32–43 (2000).
  8. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000). [CrossRef]
  9. S. Sunberg, M. Castrén, “Drug- and temperature-induced changes in peripheral circulation measured by laser-Doppler flowmetry and digital-pulse plethysmography,” Scand. J. Clin. Lab. Invest. 46, 359–365 (1989). [CrossRef]
  10. S. W. Porges, R. E. Bohrer, “The analysis of periodic processes in psychophysiological research,” in Principles of Psychophysiology: Physical, Social, and Inferential Elements (Cambridge University, New York, 1991), pp. 708–753.
  11. J. Theiler, P. E. Rapp, “Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 98, 213–222 (1996). [CrossRef] [PubMed]
  12. R. L. Barbour, R. Andronica, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPTIscanner, a general purpose optical tomographic imaging system,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 251–255.
  13. C. H. Schmitz, H. L. Graber, R. L. Barbour, “A fast versatile instrument for dynamic optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 94–96.
  14. S. Blattman, H. L. Graber, S. Zheng, Y. Pei, J. Hira, I. Arif, R. L. Barbour, “Imaging of tissue reperfusion by dynamic optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 409–410.
  15. S. Blattman, H. L. Graber, S. Zheng, Y. Pei, J. Hira, I. Arif, R. L. Barbour, “Imaging of differential reactivity of the vascular tree in the human forearm by optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 430–432.
  16. H. L. Graber, S. Zheng, Y. Pei, I. Arif, J. Hira, R. L. Barbour, “Dynamic imaging of muscle activity by optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 407–408.
  17. R. L. Barbour, H. L. Graber, S. Zheng, Y. Pei, J. Hira, I. Arif, “Optical imaging of the response of vascular dynamics to a cold shock,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 458–460.
  18. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1998). [CrossRef]
  19. Y. Pei, “Optical tomographic imaging using finite element method,” Ph.D. dissertation (Polytechnic University, Brooklyn, N.Y., 1999).
  20. K. Briggs, “An improved method for estimating Liapunov exponents of chaotic time series,” Phys. Lett. A 151, 27–32 (1990). [CrossRef]
  21. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef] [PubMed]
  22. O. Axelsson, V. A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation (Academic, New York, 1984).
  23. A. H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods (Wiley, New York, 1995), Chap. 7, Subsec. 7.4.
  24. T. M. Griffith, “Temporal chaos in the microcirculation,” Cardiovasc. Res. 31, 342–358 (1996). [PubMed]
  25. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Rev. Mod. Phys. 65, 1331–1392 (1993). [CrossRef]
  26. H. L. Graber, Y. Pei, R. L. Barbour, “Imaging of spatiotemporal coincident states by dynamic optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 153–163 (2001). [CrossRef]
  27. R. L. Barbour, H. L. Graber, Y. Pei, C. H. Schmitz, “Imaging of vascular chaos,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 577–590 (2001). [CrossRef]
  28. H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993). [CrossRef]
  29. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, 41–93 (1999). [CrossRef]
  30. G. M. Jenkins, D. G. Watts, Spectral Analysis and its Applications (Holden-Day, Oakland, Calif., 1968).
  31. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986), Chap. 12, Subsec. 12.1.
  32. P. Grassberger, I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett. 50, 346–349 (1983). [CrossRef]
  33. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, J. Hira, I. Arif, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A (to be published).
  34. More precisely, while certainly there are dynamic-feature measures (e.g., Fourier transform amplitude at a given frequency, magnitude of the cross correlation at a given time lag) whose values would be affected by a change in the properties assigned to the reference medium, there also are others [e.g., the frequency at which a peak occurs (or fails to occur) in a Fourier transform map] for which there should be essentially no effect.
  35. X. Cheng, D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4, 299–307 (1999), http://www.opticsexpress.org . [CrossRef]
  36. V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express 5, 230–242 (1999), http://www.opticsexpress.org .
  37. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000). [CrossRef] [PubMed]
  38. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 214–218.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited