OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 32 — Nov. 10, 2001
  • pp: 5860–5871

Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization

Renaud Bachelot, Carole Ecoffet, Denis Deloeil, Pascal Royer, and Daniel-Joseph Lougnot  »View Author Affiliations


Applied Optics, Vol. 40, Issue 32, pp. 5860-5871 (2001)
http://dx.doi.org/10.1364/AO.40.005860


View Full Text Article

Enhanced HTML    Acrobat PDF (2780 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple method of manufacturing micrometer-sized polymer elements at the extremity of both single-mode and multimode optical fibers is reported. The procedure consists of depositing a drop of a liquid photopolymerizable formulation on a cleaved fiber and using the light that emerges from the fiber to induce the polymerization process. After exposure and rinsing a polymer tip is firmly attached to the fiber as an extension of the fiber core. It is shown that the tip geometry can be adjusted by the variation of basic parameters such as the geometry of the deposited drop and the conditions of drop illumination. When this process is applied to a multimode fiber three-dimensional molds of the fiber’s linearly polarized modes can be obtained. The process of polymer-tip formation was simulated by a numerical calculation that consisted of an iterative beam-propagation method in a medium whose refractive index is time varying. It is shown that this process is based on the gradual growth, just above the fiber core, of an optical waveguide in the liquid formulation. Experimental data concerning two potential uses of the tipped fibers are presented.

© 2001 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(110.0180) Imaging systems : Microscopy
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.5130) Physical optics : Photochemistry
(260.5430) Physical optics : Polarization

History
Original Manuscript: August 4, 2000
Revised Manuscript: March 27, 2001
Published: November 10, 2001

Citation
Renaud Bachelot, Carole Ecoffet, Denis Deloeil, Pascal Royer, and Daniel-Joseph Lougnot, "Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization," Appl. Opt. 40, 5860-5871 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-32-5860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Kato, “Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with a spherical end,” J. Appl. Phys. 44, 2756–2758 (1973). [CrossRef]
  2. H. M. Presby, A. F. Benner, C. A. Edwards, “Laser micromaching of efficient fiber microlenses,” Appl. Opt. 29, 2692–2695 (1990). [CrossRef] [PubMed]
  3. G. Eisenstein, D. Vitello, “Chemically etched conical microlens for coupling single-mode lasers into single-mode fibers,” Appl. Opt. 21, 3470–3474 (1982). [CrossRef] [PubMed]
  4. L. G. Cohen, M. V. Schneider, “Microlens for coupling junction lasers to optical fibers,” Appl. Opt. 13, 89–93 (1974). [CrossRef] [PubMed]
  5. P. D. Bear, “Microlens for coupling single-mode fibers to single-mode thin-film waveguides,” Appl. Opt. 19, 2906–2909 (1980). [CrossRef] [PubMed]
  6. K. S. Lee, F. S. Barnes, “Microlens on the end of single-mode optical fibers for laser applications,” Appl. Opt. 24, 3134–3139 (1985). [CrossRef]
  7. N. S. Allen, ed., Photopolymerisation and Photoimaging Science and Technology (Elsevier Applied Science, London, UK, 1989). [CrossRef]
  8. C. Ecoffet, A. Espanet, D. J. Lougnot, “Photopolymerization by evanescent waves: a new method to obtain nanoparts,” Adv. Mater. 10, 411–414 (1998). [CrossRef]
  9. A. Espanet, “Photopolymerisation par les ondes evanescentes. Application à la stéreolithographie et au stokage optique de l’information,” Ph.D. dissertation (Université de Haute Alsace, Mulhouse, France, 1998).
  10. A. Espanet, C. Ecoffet, D. J. Lougnot, “Photopolymerization by evanescent waves. II: revealing dramatic inhibiting effects of oxygen at the submicrometer scale,” J. Polym. Sci. A: Polym. Chem. 3, 2075–2085 (1999).
  11. J. P. Fouassier, E. Chesneau, “Polymérisation sous irradiation laser visible,” Makromol. Chem. 492, 245–260 (1991). [CrossRef]
  12. J. E. Midwinter, Optical Fibers for Transmission (Krieger, Malabar, Fla., 1992), Chap. 7.
  13. D. J. Lougnot, “Les photopolymères,” in Techniques d’Application des Photons, J.-C. André, A.-B. Vannes, eds. (DOPEE85, Paris, 1995), pp. 245–304.
  14. T. Okoshi, S. Kitazama, “The beam propagation method,” in Analysis Methods for Electromagnetic Wave Problems, E. Yamashita, ed. (Artech House, Norwood, Mass., 1990), pp. 341–369.
  15. C. Ecoffet, M. Helle, Département de Nanotechnologie et d’Instrumentation Optique, Université de Technologie de Troyes, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex, France (private communication, 2June2000).
  16. A. S. Kewitsch, A. Yariv, “Self-focusing and self-trapping of optical beams on photopolymerization,” Opt. Lett. 21, 24–26 (1996). [CrossRef] [PubMed]
  17. N. Fressengeas, “Etude expérimentale et théorique de l’auto focalisation d’un faisceau laser en milieu photoréfractif: convergences spatiale et temporelle vers un soliton,” Ph.D. dissertation (University of Metz, Metz, France, 1997).
  18. M. Born, E. Wolf, eds., Principles of Optics, 6th ed. (Pergamon, New York, 1993), Chap. 13.
  19. M. A. Paesler, P. J. Moyer, Near-Field Optics (Wiley, New York, 1996).
  20. J. P. Fillard, Near-Field Optics and Nanoscopy (World Scientific, Singapore, 1996). [CrossRef]
  21. Ch. Lienau, A. Richter, T. Elsaesser, “Light-induced expansion of fiber tips in near-field scanning optical microscopy,” Appl. Phys. Lett. 63, 325–327 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited