OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 32 — Nov. 10, 2001
  • pp: 5911–5920

Scale-tunable optical correlation with natural light

Gladys Mínguez-Vega, Jesús Lancis, Enrique Tajahuerce, Vicent Climent, Mercedes Fernández-Alonso, Amparo Pons, and Pedro Andrés  »View Author Affiliations

Applied Optics, Vol. 40, Issue 32, pp. 5911-5920 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe two different scale-tunable optical correlators working under totally incoherent light. They behave as spatially incoherent wavelength-independent imaging systems with an achromatic point-spread function (PSF). In both cases it is possible to adapt the scale of the achromatic PSF, i.e., to modify the scaling factor of the PSF and preserve the chromatic compensation, by one’s shifting the input along the optical axis. The remarkable properties of these systems allow us to carry out a scale-tunable color pattern-recognition experiment with natural light.

© 2001 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.4550) Fourier optics and signal processing : Correlators
(070.4560) Fourier optics and signal processing : Data processing by optical means
(070.5010) Fourier optics and signal processing : Pattern recognition
(220.1000) Optical design and fabrication : Aberration compensation
(220.4830) Optical design and fabrication : Systems design

Original Manuscript: January 26, 2001
Revised Manuscript: June 8, 2001
Published: November 10, 2001

Gladys Mínguez-Vega, Jesús Lancis, Enrique Tajahuerce, Vicent Climent, Mercedes Fernández-Alonso, Amparo Pons, and Pedro Andrés, "Scale-tunable optical correlation with natural light," Appl. Opt. 40, 5911-5920 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theeory IF-10, 139–145 (1964). [CrossRef]
  2. H. J. Caulfield, R. Haimes, D. Casasent, “Beyond matched filtering,” Opt. Eng. 19, 152–156 (1980). [CrossRef]
  3. F. T. Gamble, L. M. Frye, D. R. Grieser, “Real-time fingerprint verification system,” Appl. Opt. 31, 652–655 (1992). [CrossRef] [PubMed]
  4. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  5. A. Pu, R. Denkewalter, P. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997). [CrossRef]
  6. A. W. Lohmann, H. W. Werlich, “Incoherent matched filtering with Fourier holograms,” Appl. Opt. 10, 670–672 (1971). [CrossRef] [PubMed]
  7. J. van der Gracht, J. N. Mait, “Incoherent pattern recognition with phase-only filters,” Opt. Lett. 17, 1703–1705 (1992). [CrossRef] [PubMed]
  8. S. Gorodeisky, A. A. Friesem, “Phase filters for correlators with incoherent light,” Opt. Commun. 100, 421–425 (1993). [CrossRef]
  9. J. Ding, M. Itoh, T. Yatagai, “Optimal incoherent correlator for noisy gray-tone image recognition,” Opt. Lett. 20, 2411–2413 (1995). [CrossRef] [PubMed]
  10. J. D. Brasher, E. G. Johnson, “Incoherent optical correlators and phase encoding of identification codes for access control or authentification,” Opt. Eng. 36, 2409–2416 (1997). [CrossRef]
  11. G. M. Morris, D. A. Zweig, “White-light Fourier transformations,” in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), Chap. 1.2.
  12. R. H. Katyl, “Compensating optical systems. 3: achromatic Fourier transformation,” Appl. Opt. 11, 1255–1260 (1972). [CrossRef] [PubMed]
  13. G. M. Morris, “Diffraction theory for an achromatic Fourier transformation,” Appl. Opt. 20, 2017–2025 (1981). [CrossRef] [PubMed]
  14. J. Lancis, P. Andrés, W. D. Furlan, A. Pons, “All-diffractive achromatic Fourier-transform setup,” Opt. Lett. 19, 402–404 (1994). [PubMed]
  15. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, P. Andrés, “Achromatic Fourier transforming properties of a separated diffractive lens doublet: theory and experiment,” Appl. Opt. 37, 6164–6173 (1998). [CrossRef]
  16. J. Lancis, E. Tajahuerce, P. Andrés, G. Mínguez-Vega, M. Fernández-Alonso, V. Climent, “Quasi-wavelength-independent broadband optical Fourier transformer,” Opt. Commun. 172, 153–160 (1999). [CrossRef]
  17. G. M. Morris, “An ideal achromatic Fourier processor,” Opt. Commun. 39, 143–147 (1981). [CrossRef]
  18. R. Ferrière, C. Illueca, J. P. Goedgebuer, “Corrélateur achromatique bidimensionnel,” J. Opt. (Paris) 17, 153–159 (1986).
  19. E. Tajahuerce, J. Lancis, V. Climent, P. Andrés, “Hybrid (refractive–diffractive) Fourier processor: a novel optical architecture for achromatic processing with broadband point-source illumination,” Opt. Commun. 151, 86–92 (1998). [CrossRef]
  20. P. Andrés, V. Climent, J. Lancis, G. Mínguez-Vega, E. Tajahuerce, A. W. Lohmann, “All-incoherent dispersion-compensated optical correlator,” Opt. Lett. 24, 1331–1333 (1999). [CrossRef]
  21. A. Pe’er, D. Wang, A. W. Lohmann, A. A. Friesem, “Optical correlation with totally incoherent light,” Opt. Lett. 24, 1469–1471 (1999). [CrossRef]
  22. A. Pe’er, D. Wang, A. W. Lohmann, A. A. Firesem, “Apochromatic optical correlation,” Opt. Lett. 25, 776–778 (2000). [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  24. A. Yariv, “Imaging of coherent fields through lenslike systems,” Opt. Lett. 19, 1607–1608 (1994). [CrossRef] [PubMed]
  25. M. T. Gale, M. Rosi, “Continuous-relief diffractive lenses and microlens arrays,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowsky, eds. (Akedemie Verlag, Berlin, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited