OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 32 — Nov. 10, 2001
  • pp: 5921–5927

Photoresist characterization and linearization procedure for the gray-scale fabrication of diffractive optical elements

Marion LeCompte, Xiang Gao, and Dennis W. Prather  »View Author Affiliations


Applied Optics, Vol. 40, Issue 32, pp. 5921-5927 (2001)
http://dx.doi.org/10.1364/AO.40.005921


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a procedure for the characterization and the linearization of the photoresist response to UV exposure for application to the gray-scale fabrication of diffractive optical elements. A simple and reliable model is presented as part of the characterization procedure. Application to the fabrication of surface-relief diffractive optical elements is presented, and theoretical predictions are shown to agree well with experiments.

© 2001 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.3960) Imaging systems : Microlithography

History
Original Manuscript: January 12, 2001
Revised Manuscript: June 27, 2001
Published: November 10, 2001

Citation
Marion LeCompte, Xiang Gao, and Dennis W. Prather, "Photoresist characterization and linearization procedure for the gray-scale fabrication of diffractive optical elements," Appl. Opt. 40, 5921-5927 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-32-5921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Swanson, W. B. Veldkamp, “High-efficiency, multilevel diffractive optical elements,” U.S. patent4,895,790 (23January1990).
  2. W. Dascher, P. Long, R. Stein, C. Wu, S. H. Lee, “Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997). [CrossRef]
  3. M. R. Wang, H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt. 37, 7568–7576 (1998). [CrossRef]
  4. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (MIT, Cambridge, Mass., 1989).
  5. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” (MIT, Cambridge, Mass., 1991).
  6. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  7. D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  8. D. W. Prather, M. S. Mirotznik, S. Shi, “Electromagnetic models for finite aperiodic diffractive optical elements,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, W. Masters, eds., Vol. FR22 of SIAM Frontier Book Series (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 5. [CrossRef]
  9. C. K. Wu, “High-energy beam-sensitive glasses,” U.S. patent5,285,517 (8February1994).
  10. C. Gimkiewicz, D. Hagedorn, J. Jahns, E. B. Kley, F. Thoma, “Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy beam-sensitive glass,” Appl. Opt. 38, 2986–2990 (1999). [CrossRef]
  11. T. J. Suleski, D. C. O’Shea, “Fidelity of postscript-generated masks for diffractive optics fabrication,” Appl. Opt. 34, 627–635 (1995). [CrossRef] [PubMed]
  12. T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication,” Appl. Opt. 34, 7507–7517 (1995). [CrossRef] [PubMed]
  13. T. J. Suleski, B. Baggett, W. F. Delaney, C. Koehler, E. G. Johnson, “Fabrication of high-spatial-frequency gratings through computer-generated near-field holography,” Opt. Lett. 24, 602–604 (1999). [CrossRef]
  14. M. B. Stern, T. Rubico-Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3551 (1994). [CrossRef]
  15. S. Murarka, M. Peckerar, Electronics Materials Science and Technology (Academic, New York, 1989).
  16. I. Brodie, J. J. Muray, The Physics of Micro/Nano-Fabrication (Plenum, New York, 1992). [CrossRef]
  17. L. E. Bogan, “Understanding the Novolak synthesis reaction,” in Advances in Resist Technology and Processing X, D. W. Hinsberg, ed., Proc. SPIE1925, 564–569 (1993). [CrossRef]
  18. V. N. Genkin, M. Y. Mylnikov, “Correlation between the sensitivity and the contrast of polymer resists for developing good and bad solvents,” in Advances in Resist Technology and Processing XI, O. Nalamascu, ed., Proc. SPIE2195, 751–753 (1994).
  19. R. D. Allen, R. K. Chen, P. M. Gallagher-Wetmore, “Performance properties of near-monodisperse Novolak resins,” in Advances in Resist Technology and Processing XII, R. D. Allen, ed., Proc. SPIE2438, 250–260 (1995). [CrossRef]
  20. K. Amaya, “Numerical analysis of high-resolution microlithography with thermoresist,” in Emerging Lithographic Technologies III, Y. Vladmirsky, ed., Proc. SPIE3676, 360–370 (1999). [CrossRef]
  21. G. M. Schmid, V. K. Singh, L. W. Flanagin, M. D. Stewart, S. D. Burns, G. C. Willson, “Recent advances in molecular level lithography simulation,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 675–685 (2000). [CrossRef]
  22. P. J. Paniez, G. Festes, J. P. E. Chollet, “Physical description of lithographic processes: correlation between bake conditions and photoresist contrast,” in Advances in Resist Technology and Processing IX, A. E. Novembre, ed., Proc. SPIE1672, 623–637 (1992). [CrossRef]
  23. W. E. Conley, G. E. Fuller, H. J. Levinson, L. W. Liebermann, H. M. Marchman, eds., Microlithography in Manufacturing Technology, Proc. SPIETTS5 (1996).
  24. C. R. Friedrich, A. Umeda, eds., Microlithography and Metrology in Micromaching III, Proc. SPIE3225 (1997).
  25. S. Inoue, T. Fujisawa, K. Izuha, “Effective exposure-dose measurement in optical microlithography,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 810–818 (2000). [CrossRef]
  26. B. Singh, ed., Metrology, Inspection, and Process Control for Microlithography XII, Proc. SPIE3332 (1998).
  27. S. A. Ekhorutomwen, S. P. Sawan, “Critical review on photoresists,” in Polymers in Optics: Physics, Chemistry, and Applications, R. A. Lessard, W. F. Frank, eds., Vol. CR63 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1996), pp. 214–238.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited