OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 33 — Nov. 20, 2001
  • pp: 6026–6033

Active laser resonator performance: formation of a specified intensity output

Tatyana Yu. Cherezova, Sergei S. Chesnokov, Leonid N. Kaptsov, Vadim V. Samarkin, and Alexis V. Kudryashov  »View Author Affiliations

Applied Optics, Vol. 40, Issue 33, pp. 6026-6033 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the formation of a specified super-Gaussian intensity distribution of a fundamental mode by means of an intracavity controlled mirror, which is a water-cooled bimorph flexible mirror equipped with four controlling electrodes. Analysis has confirmed the possibility to form fourth-, sixth-, and eighth-order super-Gaussian intensity distributions at the output of the stable resonators of industrial cw CO2 and YAG:Nd3+ lasers. We present the results of the experimental formation of fourth-order and sixth-order super-Gaussian fundamental modes at the output of a cw CO2 laser by means of an intracavity flexible mirror. We observed an increase in power up to 12% and an enlargement of the peak value of the far-field intensity by as much as 1.6 times that with a Gaussian TEM00 mode of the cw CO2 laser.

© 2001 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3300) Lasers and laser optics : Laser beam shaping

Original Manuscript: July 10, 2000
Revised Manuscript: June 26, 2001
Published: November 20, 2001

Tatyana Yu. Cherezova, Sergei S. Chesnokov, Leonid N. Kaptsov, Vadim V. Samarkin, and Alexis V. Kudryashov, "Active laser resonator performance: formation of a specified intensity output," Appl. Opt. 40, 6026-6033 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Abil’sitov, Technological Lasers (Mashinostroinie, Moscow, 1991), in Russian.
  2. H. Koechner, Industrial Applications of Lasers (Wiley-Interscience, New York, 1988).
  3. R. Borghi, M. Santarsiero, “Modal structure analysis for a class of axially symmetric flat-topped laser beams,” IEEE J. Quantum Electron. 35, 745–750 (1999). [CrossRef]
  4. M. Santarsiero, R. Borghi, “Correspondence between super-Gaussian and flattened Gaussian beams,” J. Opt. Soc. Am. A 16, 188–190 (1999). [CrossRef]
  5. F. Gory, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994). [CrossRef]
  6. S. Bollanti, P. Di Lazzaro, D. Murra, A. Torre, “Analytical propagation of supergaussian-like beams in the far-field,” Opt. Commun. 138, 35–39 (1997). [CrossRef]
  7. S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990). [CrossRef]
  8. A. V. Goncharsky, V. V. Popov, V. V. Stepanov, Introduction to Computer Optics (Moscow State University, Moscow, 1991), in Russian.
  9. Yu. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Institute of Physics, London, 1992).
  10. E. R. McClure, “Manufacturers turn precision optics with diamond,” Laser Focus World 27, 95–105 (1991).
  11. R. van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase mirror resonator with a super-Gaussian output in a CW-CO2 laser,” IEEE J. Quantum Electron. 30, 2663–2669 (1994). [CrossRef]
  12. A. V. Kudryashov, V. V. Samarkin, “Control of high power CO2 laser beam by adaptive optical elements,” Opt. Commun. 118, 317–322 (1995). [CrossRef]
  13. A. V. Kudryashov, A. V. Seliverstov, “Adaptive stabilized interferometer with laser diode,” Opt. Commun. 120, 239–244 (1995). [CrossRef]
  14. M. G. Galushkin, V. S. Golubev, Yu. N. Zavalov, V. Ye. Zavalova, V. Ya. Panchenko, “Enhancement of small-scale optical nonuniformities in active medium of high-power CW FAF CO2 laser,” in Optical Resonators: Science and Engineering, R. Kossowsky, M. Jelinek, J. Novak, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1998), pp. 289–300.
  15. A. Yariv, Quantum Electronics (Wiley, New York, 1989).
  16. T. Li, “Diffraction loss and selection of modes in maser resonators with circular mirrors,” Bell Syst. Tech. J. 44, 917–932 (1965). [CrossRef]
  17. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). [CrossRef]
  18. A. G. Fox, T. Li, “Effect of gain saturation on the oscillating modes of optical masers,” IEEE J. Quantum Electron. QE-2, 774–783 (1966). [CrossRef]
  19. P. A. Bélanger, C. Paré, “Optical resonators using graded phase mirrors,” Opt. Lett. 16, 1057–1059 (1991). [CrossRef]
  20. International Standard ISO 11146, “Optics and optical instruments, lasers and laser related equipment, Test methods for laser beam parameters: Beam widths, divergence angle, and beam propagation factor,” (Swiss Association for Standardization, Geneva, Switzerland, 1995).
  21. T. Yu. Cherezova, L. N. Kaptsov, A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt. 35, 2554–2561 (1996). [CrossRef] [PubMed]
  22. B. A. Boley, J. H. Weiner, Theory of the Thermal Stresses (Wiley, New York, 1963).
  23. I. A. Borodina, M. A. Vorontsov, “The effect of the mirror thermal deformations on the spatial structure of laser radiation,” J. Atmos. Oceanic Optics 1, 79–85 (1988), in Russian.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited