OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 33 — Nov. 20, 2001
  • pp: 6034–6037

High-power continuous-wave Cr4+:forsterite laser

Anatoliy Ivanov, Vladislav Shcheslavskiy, Vladislav Yakovlev, Boris Minkov, and Alexander Vasiliev  »View Author Affiliations

Applied Optics, Vol. 40, Issue 33, pp. 6034-6037 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (96 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The temperature and pump power dependence of infrared luminescence of Cr4+:forsterite are measured. It is demonstrated that temperature-dependent fluorescence in Cr4+:forsterite is the major reason for saturation of the output power of a continuous-wave laser. At higher pump intensities the temperature rise inside the crystal becomes significant, and even outside cooling does not help to prevent significant reduction of the laser performance. These measurements serve as a guideline to construct a high-power continuous-wave Cr4+:forsterite laser.

© 2001 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3600) Lasers and laser optics : Lasers, tunable
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

Original Manuscript: November 15, 2000
Revised Manuscript: June 4, 2001
Published: November 20, 2001

Anatoliy Ivanov, Vladislav Shcheslavskiy, Vladislav Yakovlev, Boris Minkov, and Alexander Vasiliev, "High-power continuous-wave Cr4+:forsterite laser," Appl. Opt. 40, 6034-6037 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasakawa, “1.3-µm InAsP modulation-doped MQW lasers,” IEEE J. Quantum Electron. 36, 728–735 (2000). [CrossRef]
  2. B. Golubovich, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704–1706 (1997). [CrossRef]
  3. E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberle, C. Rulliere, A. Mito, “Real-time two-dimensional imaging in media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000). [CrossRef]
  4. C. Xu, W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71, 2578–2580 (1997). [CrossRef]
  5. F. Rotermund, V. Petrov, “Mercury thiogalate mid-infrared femtosecond optical parametric generator pumped at 1.25 µm by a Cr4+:forsterite regenerative amplifier,” Opt. Lett. 25, 746–748 (2000). [CrossRef]
  6. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988). [CrossRef]
  7. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996). [CrossRef] [PubMed]
  8. V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989). [CrossRef] [PubMed]
  9. V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group delay,” Opt. Lett. 18, 1541–1543 (1993). [CrossRef]
  10. A. Ivanov, B. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of a forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995). [CrossRef]
  11. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993). [CrossRef]
  12. A. Agnesi, E. Piccinini, G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135, 77–82 (1997). [CrossRef]
  13. N. Zhavoronkov, A. Avtukh, V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36, 8601–8605 (1997). [CrossRef]
  14. H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr4+:forsterite laser,” in Advanced Solid State Lasers, B. Chai, S. Payne, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.
  15. A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998). [CrossRef]
  16. A. Sennaroglu, B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998). [CrossRef]
  17. D. Bimberg, M. Sondergeld, E. Grobe, “Thermal dissociation of exitons to neutral acceptors in high-purity GaAs,” Phys. Rev. B 48, 3451–3455 (1971). [CrossRef]
  18. V. V. Yakovlev, A. A. Ivanov, V. Shcheslavskiy, A. B. Vasilyev, B. I. Minkov, “High-power operation of continuous-wave Cr4+:forsterite laser: excited state absorption versus crystal temperature,” in Solid State Lasers, R. Scheps, ed., Proc. SPIE4267, 46–55 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited