OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 33 — Nov. 20, 2001
  • pp: 6056–6061

Electron-beam poling on Ti:LiNbO3

Christine Restoin, Claire Darraud-Taupiac, Jean-Louis Decossas, Jean-Claude Vareille, Vincent Couderc, Alain Barthélémy, Anthony Martinez, and Jérôme Hauden  »View Author Affiliations

Applied Optics, Vol. 40, Issue 33, pp. 6056-6061 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The periodic domain inversion by direct electron-beam (EB) bombardment on Ti:LiNbO3 is presented. Gratings with a 6.6-µm period are achieved. The inverted patterns are observed after chemical etching by use of a scanning electron microscope, and they exhibit a high resolution, as expected. Next, the influence of the EB parameters on the inversion phenomenon is developed for both LiNbO3 and Ti:LiNbO3. In this way we can provide an explanation of the phenomenon of domain inversion with an EB, which is not completely understood. Finally, quasi-phase-matched second-harmonic generation is presented in bulk LiNbO3 by use of a Nd:YAG laser light. These experiments allowed us to achieve the characteristics of the inverted domains along the crystal in particular.

© 2001 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.4400) Nonlinear optics : Nonlinear optics, materials
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4320) Optical devices : Nonlinear optical devices

Original Manuscript: November 13, 2000
Revised Manuscript: July 10, 2001
Published: November 20, 2001

Christine Restoin, Claire Darraud-Taupiac, Jean-Louis Decossas, Jean-Claude Vareille, Vincent Couderc, Alain Barthélémy, Anthony Martinez, and Jérôme Hauden, "Electron-beam poling on Ti:LiNbO3," Appl. Opt. 40, 6056-6061 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  3. G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 34–45 (1996). [CrossRef]
  4. G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73, 865–867 (1998). [CrossRef]
  5. C. J. Van Der Poel, J. D. Bierlen, J. B. Brown, S. Colak, “Efficient type i blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990). [CrossRef]
  6. K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, T. Taniuchi, “Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991). [CrossRef]
  7. S. Miyazawa, “Ferroelectric domain inversion in Ti-indiffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979). [CrossRef]
  8. S. Thaniyavarn, T. Findakly, D. Boeher, J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated optical devices,” Appl. Phys. Lett. 46, 933–935 (1985). [CrossRef]
  9. V. Bermudez, F. Caccavale, E. Dieguez, “Domain walls of the opposite domain lithium niobate structures,” J. Cryst. Growth 219, 413–418 (2000). [CrossRef]
  10. H. Itoh, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991). [CrossRef]
  11. R. W. Keys, A. Loni, R. M. de La Rue, C. N. Ironside, J. M. Marsh, B. J. Luff, P. D. Townsend, “Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment,” Electron. Lett. 26, 188–190 (1990). [CrossRef]
  12. C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, J. Martinez, “Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3,” J. Appl. Phys. 88, 6665–6668 (2000). [CrossRef]
  13. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” Photon. Technol. Lett. 11, 328–330 (1999). [CrossRef]
  14. M. Fujimura, T. Suhara, “LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning,” J. Lightwave Technol. 11, 1360–1368 (1993). [CrossRef]
  15. M. Fujimura, T. Suhara, H. Nishihara, “LiNbO3 waveguide SHG device with ferroelectric-domain inverted grating formed by electron beam scanning,” Electron. Lett. 28, 721–722 (1992). [CrossRef]
  16. M. Yamada, K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991). [CrossRef]
  17. A. C. G. Nutt, V. Gopalan, M. C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett. 60, 2828–2830 (1992). [CrossRef]
  18. A. F. Bielajew, D. W. O. Rogers, “PRESTA: the parameter reduced electron-step transport algorithm for electron Monte-Carlo transport,” Nucl. Instrum. Methods Phys. Rev. B 18, 165–181 (1987). [CrossRef]
  19. G. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited