OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 33 — Nov. 20, 2001
  • pp: 6136–6144

CO2 imaging with saturated planar laser-induced vibrational fluorescence

Brian J. Kirby and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 40, Issue 33, pp. 6136-6144 (2001)
http://dx.doi.org/10.1364/AO.40.006136


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present new vibrational (infrared) planar laser-induced fluorescence (PLIF) imaging techniques for CO2 that use a simple, inexpensive, high-pulse-energy transversely excited atmospheric CO2 laser to saturate a CO2 absorption transition at 10.6 µm. Strong excitation by use of a CO2 laser provides increased signal levels at flame temperatures and simplifies image interpretation. Because rotational energy transfer and intramodal vibrational energy transfer are fast, vibrational distributions can be approximated by use of a simple three-temperature model. Imaging results from a 425 K unsteady transverse CO2 jet and a laminar coflowing CO/H2 diffusion flame with temperatures near 1500 K are presented. If needed, temperature-insensitive signal levels can be generated with a two-laser technique. These results illustrate the potential for saturated infrared PLIF in a variety of flows.

© 2001 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: January 22, 2001
Revised Manuscript: July 23, 2001
Published: November 20, 2001

Citation
Brian J. Kirby and Ronald K. Hanson, "CO2 imaging with saturated planar laser-induced vibrational fluorescence," Appl. Opt. 40, 6136-6144 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-33-6136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999). [CrossRef]
  2. B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000). [CrossRef]
  3. B. J. Kirby, R. K. Hanson, “Linear excitation schemes for infrared planar laser-induced fluorescence imaging of CO and CO2,” Appl. Opt. (2001) (to be published). [CrossRef]
  4. M. B. Long, D. C. Fourguette, M. C. Escoda, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983). [CrossRef] [PubMed]
  5. J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987). [CrossRef] [PubMed]
  6. N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997). [CrossRef]
  7. G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998). [CrossRef]
  8. L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide—II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981). [CrossRef]
  9. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1945).
  10. W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1965).
  11. F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide perturbed by N2, O2, and Ar and in the 1310 ← 0000 and 1310 ← 0110 bands of pure nitrous oxide,” J. Mol. Spectrosc. 175, 315–326 (1996). [CrossRef]
  12. M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
  13. R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2. I: Influence of parity in Δ ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997). [CrossRef]
  14. B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990). [CrossRef]
  15. L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable diode laser,” J. Chem. Phys. 84, 1149–1156 (1986). [CrossRef]
  16. M. Margottin-Maclou, A. Henry, A. Valentin, “Line mixing in the Q-branches of the ν1 + ν2 band of nitrous oxide and of the (1110)I ← (0220) band of carbon dioxide,” J. Chem. Phys. 96, 1715–1723 (1992). [CrossRef]
  17. T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 1000 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989). [CrossRef]
  18. R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1 + ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997). [CrossRef] [PubMed]
  19. J.-M. Hartmann, C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting and scaling analysis,” J. Chem. Phys. 94, 6406–6419 (1991). [CrossRef]
  20. C. P. Rinsland, L. L. Strow, “Line mixing effects in solar occultation spectra of the lower stratosphere: measurements and comparisons with calculations for the 1932-cm-1 CO2Q branch,” Appl. Opt. 28, 457–464 (1989). [CrossRef] [PubMed]
  21. B. Gentry, L. L. Strow, “Line mixing in a N2-broadened CO2Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722–5730 (1987). [CrossRef]
  22. G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998). [CrossRef]
  23. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982). [CrossRef]
  24. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules. XI. Cross sections and rate constants for Ar + CO2,” Chem. Phys. 91, 327–339 (1984). [CrossRef]
  25. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited