OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 34 — Dec. 1, 2001
  • pp: 6157–6165

Investigation of the properties of an ion-etched plane laminar holographic grating

William R. Hunter, Michael P. Kowalski, Jack C. Rife, and Raymond G. Cruddace  »View Author Affiliations


Applied Optics, Vol. 40, Issue 34, pp. 6157-6165 (2001)
http://dx.doi.org/10.1364/AO.40.006157


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have measured the efficiency over the range 125–225 Å of a bare ion-etched plane laminar holographic grating made of fused silica and with 1000 grooves/mm. The measured efficiency of each order oscillates with wavelength because of constructive and destructive interference between radiation diffracted from the lands and the grooves. We measured the grating groove profile with an atomic force microscope, and the resulting groove depth of 434 ± 6 Å agrees well with the values determined independently from the oscillatory behavior of the efficiency measurements. Grating efficiency in the +1 order peaked at values of 0.027%, 0.011%, and 0.005% at wavelengths of 191, 157, and 132 Å, respectively; and the derived groove efficiencies are 27%, 25%, and 27%. The irregular shape at the land–groove edges dominates the large grating roughness of 23–45-Å rms, but even regions far from the edges have a roughness of 10–18-Å rms. The average groove profile was used to model the grating efficiency, and the resulting wavelengths predicted for different order maxima and minima agree well with measured wavelengths, although the calculated efficiencies are greater than the measured results by 10–20%.

© 2001 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(260.7200) Physical optics : Ultraviolet, extreme
(350.1260) Other areas of optics : Astronomical optics

History
Original Manuscript: May 23, 2001
Revised Manuscript: August 28, 2001
Published: December 1, 2001

Citation
William R. Hunter, Michael P. Kowalski, Jack C. Rife, and Raymond G. Cruddace, "Investigation of the properties of an ion-etched plane laminar holographic grating," Appl. Opt. 40, 6157-6165 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-34-6157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Vidal, P. Vincent, P. Dhez, M. Nevière, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE563, 142–149 (1985). [CrossRef]
  2. K.-H. Hellwege, “Über rasterförmige Reflexionsgitter,” Z. Phys. 106, 588–596 (1937). [CrossRef]
  3. K.-H. Hellwege, “Über rasterförmige Reflexionsgitter, Nachtrag,” Z. Phys. 111, 495–497 (1939). [CrossRef]
  4. R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-1/mm grating,” Phys. Scr. 41, 396–399 (1990). [CrossRef]
  5. M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995). [CrossRef] [PubMed]
  6. J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995). [CrossRef] [PubMed]
  7. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997). [CrossRef] [PubMed]
  8. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997). [CrossRef]
  9. M. P. Kowalski, T. W. Barbee, K. F. Heidemann, H. Gursky, J. C. Rife, W. R. Hunter, G. G. Fritz, R. G. Cruddace, “Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer,” Appl. Opt. 38, 6487–6493 (1999). [CrossRef]
  10. M. Kowalski, “Space Science Division’s J-PEX instrument to provide new data on the evolution of white dwarf stars,” NRL Labstracts (Naval Research Laboratory, Washington, D.C., 2001).
  11. G. Quincke, Pogg. Ann. Phys. Chem. 132, 364 (1867).
  12. G. Quincke, Pogg, Ann. Phys. Chem.146, 1 (1872).
  13. C. H. Cartwright, “Laminar reflection gratings for infrared investigation,” J. Opt. Soc. Am. 21, 785 (1931). [CrossRef]
  14. C. Candler, Modern Interferometers (Hilger, London, 1951).
  15. A. Franks, K. Lindsey, J. M. Bennett, R. J. Speer, D. Turner, D. J. Hunt, “The theory, manufacture, structure and performance of N.P.L. x-ray gratings,” Philos. Trans. R. Soc. London 277, 503–543 (1975). [CrossRef]
  16. W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A grating/crystal monochromator for the spectral range 5 eV to 5 keV,” Nucl. Instrum. Methods Phys. Res. 195, 141–153 (1982). [CrossRef]
  17. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL beam line X24C,” (Naval Research Laboratory, Washington, D.C., 1995).
  18. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 246, 465–468 (1986). [CrossRef]
  19. M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997). [CrossRef]
  20. L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994). [CrossRef]
  21. L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2215, 240–245 (1995). [CrossRef]
  22. J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu–Be multilayer-coated gratings operating near-normal incidence in the 11.1–12.0-nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited