OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 34 — Dec. 1, 2001
  • pp: 6246–6251

Monolithic integration of microfluidic channels and optical waveguides in silica on silicon

Peter Friis, Karsten Hoppe, Otto Leistiko, Klaus Bo Mogensen, Jörg Hübner, and Jörg P. Kutter  »View Author Affiliations

Applied Optics, Vol. 40, Issue 34, pp. 6246-6251 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sealing of the flow channel is an important aspect during integration of microfluidic channels and optical waveguides. The uneven topography of many waveguide-fabrication techniques will lead to leakage of the fluid channels. Planarization methods such as chemical mechanical polishing or the etch-back technique are possible, but troublesome. We present a simple but efficient alternative: By means of changing the waveguide layout, bonding pads are formed along the microfluidic channels. With the same height as the waveguide, they effectively prevent leakage and hermetically seal the channels during bonding. Negligible influence on light propagation is found when 10-µm-wide bonding pads are used. Fabricated microsystems with application in absorbance measurements and flow cytometry are presented.

© 2001 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides

Original Manuscript: February 23, 2001
Revised Manuscript: July 6, 2001
Published: December 1, 2001

Peter Friis, Karsten Hoppe, Otto Leistiko, Klaus Bo Mogensen, Jörg Hübner, and Jörg P. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990). [CrossRef]
  2. S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000). [CrossRef]
  3. R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998). [CrossRef]
  4. R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13–28 (1997). [CrossRef]
  5. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995). [CrossRef]
  6. R. J. Deri, “Monolithic integration of optical waveguide circuitry with III-V photodetectors for advanced lightwave receivers,” J. Lightwave Technol. 11, 1296–1313 (1993). [CrossRef]
  7. A. Neyer, T. Pohlmann, “Fabrication of low-loss titanium-diffused LiNbO3 waveguides using a closed platinum crucible,” Electron. Lett. 23, 1187–1188 (1987). [CrossRef]
  8. T. Storgaard-Larsen, O. Leistiko, “Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors,” J. Electrochem. Soc. 144, 1505–1513 (1997). [CrossRef]
  9. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990). [CrossRef]
  10. R. Yoshimura, M. Hikita, S. Tomaru, S. Imamura, “Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate,” J. Lightwave Technol. 16, 1030–1037 (1998). [CrossRef]
  11. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5th ed. (McGraw-Hill, New York, 1985).
  12. K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001). [CrossRef]
  13. P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.
  14. G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995). [CrossRef]
  15. K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996). [CrossRef]
  16. J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000). [CrossRef] [PubMed]
  17. Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995). [CrossRef]
  18. S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988). [CrossRef]
  19. J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001). [CrossRef]
  20. H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited