OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 34 — Dec. 1, 2001
  • pp: 6281–6291

Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration

Olivier Coquoz, Lars O. Svaasand, and Bruce J. Tromberg  »View Author Affiliations


Applied Optics, Vol. 40, Issue 34, pp. 6281-6291 (2001)
http://dx.doi.org/10.1364/AO.40.006281


View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A frequency-domain photon migration (FDPM) technique is developed for quantitative measurement of the absorption and reduced scattering coefficients of highly turbid samples in a small-volume (0.45-ml) reflective cuvette. We present both an analytical model for the FDPM cuvette and its experimental verification, using calibrated phantoms and suspensions of living cells. FDPM model fits to experimental data demonstrate that the reduced scattering (μ s ′) and absorption (μ a ) coefficients can be derived with accuracies of 5–10% and 10–15%, respectively. Changing the cuvette wall reflectivity alters the frequency-dependent behavior of photon density waves (PDWs). For highly reflective wall boundaries (Reff ≥ 90–95%), PDW confinement leads to substantial enhancement in both amplitude and phase compared with identical samples in infinite media. Results from experiments on microsphere suspensions are compared with predictions from Mie theory to assess the potential of this method to interpret scattering properties in terms of scatterer size and density. Optical property measurements of biological cell suspensions are reported, and the possibility of optically monitoring cell physiology in a carefully controlled environment is demonstrated.

© 2001 Optical Society of America

OCIS Codes
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory
(290.7050) Scattering : Turbid media

History
Original Manuscript: January 2, 2001
Revised Manuscript: August 7, 2001
Published: December 1, 2001

Citation
Olivier Coquoz, Lars O. Svaasand, and Bruce J. Tromberg, "Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration," Appl. Opt. 40, 6281-6291 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-34-6281


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  2. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989). [CrossRef] [PubMed]
  3. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  4. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993). [CrossRef]
  5. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, J. C. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993). [CrossRef] [PubMed]
  6. H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993). [CrossRef] [PubMed]
  7. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  8. P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995). [CrossRef]
  9. F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: Measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995). [CrossRef]
  10. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  11. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997). [CrossRef] [PubMed]
  12. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997). [CrossRef]
  13. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993). [CrossRef] [PubMed]
  14. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993). [CrossRef] [PubMed]
  15. J. R. Lakowicz, K. W. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990). [CrossRef]
  16. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  17. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  18. S. J. Madsen, R. C. Haskell, B. J. Tromberg, “A portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994). [CrossRef] [PubMed]
  19. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000). [CrossRef]
  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. D. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. B. Gelebart, E. Tinet, J.-M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996). [CrossRef]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  24. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  25. B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell Biophys. 8, 359–386 (1995).
  26. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993). [PubMed]
  27. B. Beauvoit, K. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994). [CrossRef] [PubMed]
  28. B. Beauvoit, S. M. Evans, Y. W. Jenkins, E. Miller, B. Chance, “Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors,” Anal. Biochem. 226, 167–174 (1995). [CrossRef] [PubMed]
  29. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  30. J. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  31. A. Dunn, R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited