OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 34 — Dec. 1, 2001
  • pp: 6319–6326

Forbidden gaps in finite periodic and quasi-periodic Cantor-like dielectric multilayers at normal incidence

E. Cojocaru  »View Author Affiliations

Applied Optics, Vol. 40, Issue 34, pp. 6319-6326 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Periodic and quasi-periodic Cantor-like bandgap structures that bordered upon a medium of refractive index n0 are analyzed. An immersion model is used with the assumption that each layer is embedded between two identical regions of refractive index n0 and thickness d0, where d0 is set equal to zero. Transmittance and group velocity are determined. Their dependence on n0 is emphasized. Relations for the midgap value of the normalized group velocity are given. By use of these relations, diagrams are completed at different values of n0, showing the pairs of quarter-wave-layer refractive indices at which there is an apparent superluminal tunneling through the finite periodic and quasi-periodic Cantor-like bandgap structures.

© 2001 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.1480) Optical devices : Bragg reflectors
(230.4170) Optical devices : Multilayers
(240.7040) Optics at surfaces : Tunneling
(310.6870) Thin films : Thin films, other properties
(350.5030) Other areas of optics : Phase

Original Manuscript: December 19, 2000
Revised Manuscript: June 27, 2001
Published: December 1, 2001

E. Cojocaru, "Forbidden gaps in finite periodic and quasi-periodic Cantor-like dielectric multilayers at normal incidence," Appl. Opt. 40, 6319-6326 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., feature on the development and applications of materials exhibiting photonic bandgaps, J. Opt. Soc. Am. B 10, 279–413 (1993).
  2. G. Kurizki, J. W. Haus, eds., feature on photonic band structures, J. Mod. Opt. 41, 171–404 (1994).
  3. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). [CrossRef]
  4. E. Yablonovitch, “Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filter,” Opt. Lett. 23, 1648–1649 (1998). [CrossRef]
  5. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 2799–2803 (1996). [CrossRef] [PubMed]
  6. M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  7. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997). [CrossRef]
  8. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994). [CrossRef]
  9. J. M. Bendickson, J. P. Dowling, M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996). [CrossRef]
  10. A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993). [CrossRef] [PubMed]
  11. A. M. Steinberg, R. Y. Chiao, “Tunneling delay times in one and two dimensions,” Phys. Rev. A 49, 3283–3295 (1994). [CrossRef] [PubMed]
  12. M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic band-gap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995). [CrossRef] [PubMed]
  13. M. Bertolotti, P. Masciulli, C. Sibilia, “Spectral transmission properties of a self-similar optical Fabry–Perot resonator,” Opt. Lett. 19, 777–779 (1994). [CrossRef] [PubMed]
  14. C. Sibilia, I. S. Nefedov, M. Scalora, M. Bertolotti, “Electromagnetic mode density for finite quasi-periodic structures,” J. Opt. Soc. Am. B 15, 1947–1952 (1998). [CrossRef]
  15. D. M. Spink, C. B. Thomas, “Optical constant determination of thin films: an analytical solution,” Appl. Opt. 27, 4362–4362 (1988). [CrossRef] [PubMed]
  16. N. Matuschek, F. X. Kärtner, U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33, 295–302 (1997). [CrossRef]
  17. P. Yeh, A. Yariv, C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec. 1.6.
  19. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42, 806–810 (1952). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited