OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 34 — Dec. 1, 2001
  • pp: 6389–6395

Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique

Robert Weersink, Michael S. Patterson, Kevin Diamond, Shawna Silver, and Neil Padgett  »View Author Affiliations

Applied Optics, Vol. 40, Issue 34, pp. 6389-6395 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurement of the concentration of fluorescent compounds in turbid media is difficult because the absorption and multiple scattering of excitation and emission of light has a large effect on the detected fluorescence. For surface measurements with optical fibers we demonstrate by experiments and numerical simulation that this effect can be minimized by measurement of the fluorescence at one source–detector distance, the diffusely reflected excitation light at a second distance, and with the ratio of these two signals as an indicator of fluorophore concentration. For optical properties typical of soft tissue in the red and the near infrared the optimum performance is obtained by measurement of fluorescence at 0.65 mm and reflectance at 1.35 mm. This choice reduces the rms error in fluorophore concentration to 14.6% over a wide range of absorption and scattering coefficients.

© 2001 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.7050) Medical optics and biotechnology : Turbid media

Original Manuscript: March 14, 2001
Revised Manuscript: June 25, 2001
Published: December 1, 2001

Robert Weersink, Michael S. Patterson, Kevin Diamond, Shawna Silver, and Neil Padgett, "Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique," Appl. Opt. 40, 6389-6395 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991). [CrossRef] [PubMed]
  2. D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).
  3. R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998). [CrossRef] [PubMed]
  4. D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995). [CrossRef] [PubMed]
  5. J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).
  6. M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993). [CrossRef] [PubMed]
  7. R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986). [CrossRef] [PubMed]
  8. D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996). [CrossRef] [PubMed]
  9. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl. Opt. 31, 3585–3595 (1993). [CrossRef]
  10. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  11. W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 177–186.
  12. A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 12–18 (1990).
  13. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  14. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997). [CrossRef] [PubMed]
  15. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001). [CrossRef] [PubMed]
  16. L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997). [CrossRef] [PubMed]
  17. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  18. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997). [CrossRef] [PubMed]
  19. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited