OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 34 — Dec. 1, 2001
  • pp: 6396–6405

Absorption coefficient and purine photobleaching rate in colon mucosa during resonance Raman spectroscopy at 251 nm

Nada N. Boustany  »View Author Affiliations

Applied Optics, Vol. 40, Issue 34, pp. 6396-6405 (2001)

View Full Text Article

Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In contrast to spectroscopy at longer wavelengths, typical attributes of ultraviolet resonance Raman (UVRR) spectroscopy of biologic tissue are higher absorption coefficient, μ, and higher photobleaching rate, κ. This study was aimed at measuring μ and κ during UVRR spectroscopy of human colon tissue at 251 nm. μ was used to estimate the penetration depth of the excitation light; κ was used to predict the rate of signal decrease that was due to photobleaching as a function of laser fluence and tissue thickness. The fitting of the equations through description of a three-state transition model to experimental data that consisted of a purine UVRR signal gave μ = 0.0169 ∓ 0.0023 μm<sup>−1</sup> and κ = 0.572 ∓ 0.168 (mJ/μm<sup>2</sup>)<sup>−1</sup>. κ remained independent of power <i>P</i> for <i>P</i> < 1 mW, but higher power values resulted in a higher photobleaching rate. As predicted by the model, signal decrease that was due to photobleaching was slower as sample thickness was increased.

© 2001 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(260.5130) Physical optics : Photochemistry
(260.5740) Physical optics : Resonance
(260.7190) Physical optics : Ultraviolet
(300.6450) Spectroscopy : Spectroscopy, Raman

Nada N. Boustany, "Absorption coefficient and purine photobleaching rate in colon mucosa during resonance Raman spectroscopy at 251 nm," Appl. Opt. 40, 6396-6405 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. Sureau, L. Chinsky, C. Amirand, J. P. Ballini, M. Dusquesne, A. Laigle, P. Y. Turpin, and P. Vigny, “An ultraviolet micro-Raman spectrometer: resonance Raman spectroscopy within single cells,” Appl. Spectrosc. 44, 1047–1051 (1990).
  2. W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
  3. S. Chadha and W. H. Nelson, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).
  4. R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, and M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).
  5. V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. Asher, “UV Raman microspectroscopy: spectral and spatial selectivity with sensitivity and simplicity,” Appl. Spectrosc. 51, 81–86 (1997).
  6. Y. Yazdi, N. Ramanujam, R. Lotan, M. M. Follen, W. Hittelman, and R. Richards-Kortum, “Resonance Raman spectroscopy at 257 nm excitation of normal and malignant cultured breast and cervical cells,” Appl. Spectrosc. 53, 82–85 (1999).
  7. N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, and M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
  8. N. N. Boustany, R. Manoharan, R. R. Dasari, and M. S. Feld, “Ultraviolet Raman spectroscopy of bulk and microscopic colon tissue,” Appl. Spectrosc. 54, 24–30 (2000).
  9. M. H. Patrick and R. O. Rahn, “Photochemistry of DNA and polynucleotides: photoproducts,” in Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, ed. (Academic, New York, 1976), Vol. 2.
  10. D. Strommen and K. Nakamoto, Laboratory Raman Spectroscopy (Wiley, New York, 1984), pp. 115, 118.
  11. G. Dellepiane and J. Overend, “Vibrational spectra and assignment of acetone, ααα acetone-d3 and acetone-d6,” Spectrochim. Acta 22, 593–614 (1966).
  12. S. T. Wollman and P. W. Bohn, “Evaluation of polynomial fitting functions for use with CCD arrays in Raman spectroscopy,” Appl. Spectrosc. 47, 125–126 (1993).
  13. W. H. Press, S. A. Teulosky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  14. G. H. Pettit and M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt. 35, 3386–3391 (1996).
  15. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
  16. J. Raunest and H-J. Schwarzmaier, “Optical properties of human articular tissue as implication for a selective laser application in arthroscopic surgery,” Lasers Surg. Med. 16, 253–261 (1995).
  17. V. V. Tuchin, S. R. Utz, and I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
  18. M. A. Everett, E. Yeargers, R. M. Sayre, and R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
  19. J. R. Loofbourow, B. S. Gould, and I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
  20. B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
  21. E. Chan, T. Menovsky, and A. J. Welch, “Effect of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
  22. R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, and G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
  23. G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122(1995).
  24. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
  25. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
  26. G. G. Gurzadyan, R. K. Ispiryan, and K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
  27. D. N. Nikogosyan, D. A. Angelov, and A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
  28. N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, and M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).
  29. J. R. Taylor, An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, Calif., 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited