OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 35 — Dec. 10, 2001
  • pp: 6415–6424

Implementation of high-resolution diffractive optical elements on coupled phase and amplitude spatial light modulators

Christophe Stolz, Laurent Bigué, and Pierre Ambs  »View Author Affiliations

Applied Optics, Vol. 40, Issue 35, pp. 6415-6424 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (4016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the optical implementation of diffractive optical elements onto electrically addressed liquid-crystal spatial light modulators. We compare the classic implementations onto amplitude-only or phase-only domains with the implementations onto coupled phase and amplitude (spiral) domains. We demonstrate that the coupling between amplitude and phase provides a trade-off between diffraction efficiency and the signal-to-noise ratio in the reconstruction. Furthermore, when investigating the influence of the maximum dephasing on phase domains and spiral domains through the use of optimal trade-off design, we show that phase-only domains with limited maximum dephasing can provide satisfactory performance. Finally, optical implementations are provided.

© 2001 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

Original Manuscript: January 18, 2001
Revised Manuscript: June 29, 2001
Published: December 10, 2001

Christophe Stolz, Laurent Bigué, and Pierre Ambs, "Implementation of high-resolution diffractive optical elements on coupled phase and amplitude spatial light modulators," Appl. Opt. 40, 6415-6424 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Laude, C. Dirson, “Liquid-crystal active lens: application to image resolution enhancement,” Opt. Commun. 163, 72–78 (1999). [CrossRef]
  2. CRL Opto, “Miniatures LCDs,” http://www.crlopto.com/wop/lc-prods.htm (1999).
  3. V. Laude, P. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier SLM filters,” Appl. Opt. 33, 4465–4471 (1994). [CrossRef] [PubMed]
  4. D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467–469 (1986). [CrossRef] [PubMed]
  5. L. G. Neto, D. Roberge, Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35, 4567–4576 (1996). [CrossRef] [PubMed]
  6. L. G. Neto, D. Roberge, Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid crystal television,” Appl. Opt. 34, 1944–1950 (1995). [CrossRef] [PubMed]
  7. P. Réfrégier, “Filter design for optical pattern recognition: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990). [CrossRef] [PubMed]
  8. L. Legeard, P. Réfrégier, P. Ambs, “Multicriteria optimality for iterative encoding of computer-generated holograms,” Appl. Opt. 36, 7444–7449 (1997). [CrossRef]
  9. M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef] [PubMed]
  10. L. Bigué, P. Ambs, “Optimal multicriteria approach to the iterative Fourier transform algorithm,” Appl. Opt. 40, 5886–5893 (2001). [CrossRef]
  11. Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994). [CrossRef]
  12. M. Yamauchi, T. Eiju, “Optimization of twisted nematic liquid crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19–25 (1995). [CrossRef]
  13. J. Colin, “Corrélation optique photoréfractive haute cadence à transformée de Fourier conjointe,” Thesis, Université Paris 6, Paris, France (1998).
  14. C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994). [CrossRef]
  15. I. Labastida, A. Carnicer, E. Martin-Badosa, S. Vallmitjana, I. Juvells, “Optical correlation by use of partial phase-only modulation with VGA liquid-crystal displays,” Appl. Opt. 39, 766–769 (2000). [CrossRef]
  16. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical phase modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  17. C. R. Fernández-Pousa, I. Moreno, N. Bennis, C. Gómez-Reino, “Generalized formulation and symmetry properties of reciprocal nonabsorbing polarization devices: application to liquid-crystal displays,” J. Opt. Soc. Am. A 17, 2074–2080 (2000). [CrossRef]
  18. S. E. Monroe, M. J. Rollins, R. D. Juday, “Advances in full-face full-complex SLM characterization,” in Optical Pattern Recognition XII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4387, 68–77 (2001). [CrossRef]
  19. S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, “Programmable multiple-level phase modulation that uses ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 6652–6665 (1995). [CrossRef] [PubMed]
  20. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999). [CrossRef]
  21. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994). [CrossRef] [PubMed]
  22. C. Stolz, L. Bigué, P. Ambs, “High-resolution multilevel computer generated holograms on a TN LCD spatial light modulator,” in Diffractive Optics, F. Wyrowski, J. Turunen, eds., Vol. 22 of EOS Topical Meetings Digest Series (European Optical Society, Hanover, Germany), pp. 215–216 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited