OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 35 — Dec. 10, 2001
  • pp: 6466–6473

Spatial phase information transmission through an optical fiber by coherence function synthesis

Yuichi Teramura and Fumihiko Kannari  »View Author Affiliations


Applied Optics, Vol. 40, Issue 35, pp. 6466-6473 (2001)
http://dx.doi.org/10.1364/AO.40.006466


View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission of one-dimensional spatial phase information by low-coherence light through a single-mode optical fiber is experimentally demonstrated by use of space–time conversion at a 4-f Fourier coherence function shaper and time–space conversion with spectral holography. The dispersion during the fiber propagation can be automatically compensated for with spectral holography. However, space–time coupling caused by the transmitter limits the capacity of information transmittable with one coherence function shaping. A significant advantage in the space–time–space conversion with low-coherence light is that an infinite number of signal channels can be multiplexed with a newly invented delay-time division scheme, which can extend this analog transmission to two-dimensional spatial phase patterns.

© 2001 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

History
Original Manuscript: November 27, 2000
Revised Manuscript: August 7, 2001
Published: December 10, 2001

Citation
Yuichi Teramura and Fumihiko Kannari, "Spatial phase information transmission through an optical fiber by coherence function synthesis," Appl. Opt. 40, 6466-6473 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-35-6466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.
  2. T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.
  3. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994). [CrossRef] [PubMed]
  4. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995). [CrossRef] [PubMed]
  5. P. C. Sun, Y. T. Mazurenko, Y. Fainman, “Real-time one-dimensional coherent imaging through single-mode fibers by space-time conversion processors,” Opt. Lett. 22, 1861–1863 (1997). [CrossRef]
  6. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995). [CrossRef]
  7. A. M. Weiner, J. P. Heritage, J. H. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988). [CrossRef] [PubMed]
  8. T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999). [CrossRef]
  9. H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998). [CrossRef]
  10. D. M. Marom, P. C. Sun, Y. Fainman, “Analysis of spatial–temporal converters for all-optical communication links,” Appl. Opt. 37, 2858–2868 (1998). [CrossRef]
  11. V. Binjrajka, C.-C. Chang, A. W. R. Emanuel, D. E. Leaird, A. M. Weiner, “Pulse shaping of incoherent light by use of a liquid-crystal modulator array,” Opt. Lett. 21, 1756–1758 (1996). [CrossRef] [PubMed]
  12. Y. Teramura, K. Suzuki, M. Suzuki, F. Kannari, “Low-coherence interferometry with synthesis of coherence function,” Appl. Opt. 38, 5974–5980 (1999). [CrossRef]
  13. Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999). [CrossRef]
  14. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991). [CrossRef]
  15. M. M. Wefers, K. A. Nelson, “Space–time profiles of shaped ultrafast optical wave-forms,” IEEE J. Quantum Electron. 32, 161–172 (1996). [CrossRef]
  16. D. Meshulach, D. Yelin, Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997). [CrossRef]
  17. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  18. R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited