OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 35 — Dec. 10, 2001
  • pp: 6479–6491

Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor– self-electro-optic-device-based prototype

Alvaro Cassinelli, Pierre Chavel, and Marc P. Y. Desmulliez  »View Author Affiliations


Applied Optics, Vol. 40, Issue 35, pp. 6479-6491 (2001)
http://dx.doi.org/10.1364/AO.40.006479


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experimental results and performance analysis of a dedicated optoelectronic processor that implements stochastic optimization-based image-processing tasks in real time. We first show experimental results using a proof-of-principle-prototype demonstrator based on standard silicon–complementary-metal-oxide-semiconductor (CMOS) technology and liquid-crystal spatial light modulators. We then elaborate on the advantages of using a hybrid CMOS–self-electro-optic-device-based smart-pixel array to monolithically integrate photodetectors and modulators on the same chip, providing compact, high-bandwidth intrachip optoelectronic interconnects. We have modeled the operation of the monolithic processor, clearly showing system-performance improvement.

© 2001 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(100.0100) Image processing : Image processing
(200.0200) Optics in computing : Optics in computing
(200.4650) Optics in computing : Optical interconnects
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(330.4150) Vision, color, and visual optics : Motion detection

History
Original Manuscript: December 19, 2000
Revised Manuscript: August 16, 2001
Published: December 10, 2001

Citation
Alvaro Cassinelli, Pierre Chavel, and Marc P. Y. Desmulliez, "Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor– self-electro-optic-device-based prototype," Appl. Opt. 40, 6479-6491 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-35-6479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984). [CrossRef]
  2. S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982). [CrossRef]
  3. P. Chavel, A. Cassinelli, I. Glaser, “Optoelectronic cellular automata for video real time vision,” in Optics in Computing 2000, R. A. Lessard, T. Galstian, Proc. SPIE4089, 374–381 (2000).
  4. A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the Tenth International Optical Computing Conference, S. Horwitz, ed. (IEEE Computer Society and International Optical Conference, New York, 1983), pp. 13–17. [CrossRef]
  5. J. Taboury, J. M. Wang, P. Chavel, F. Devos, P. Garda, “Optical cellular processor architecture. 1. Principles,” Appl. Opt. 9, 1643–1650 (1988). [CrossRef]
  6. J. Taboury, J. M. Wang, P. Chavel, F. Devos, “Optical cellular processor architecture. 2: Illustration and system considerations,” Appl. Opt. 28, 3138–3147 (1989). [CrossRef] [PubMed]
  7. D. E. Knuth, “Random numbers,” in The Art of Computer Programming, (Addison-Wesley, Reading, Mass., 1969), Vol. 2, Chap. 3, pp. 9–22.
  8. Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993). [CrossRef]
  9. A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996). [CrossRef]
  10. P. Chavel, Ph. Lalanne, J. C. Rodier, “Optoelectronic stochastic processor arrays: demonstration of video rate simulated annealing noise cleaning operation,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI) (IEEE Computer Society, Los Alamitos, Calif., 1996), 158–167.
  11. P. Lalande, P. Bouthemy, “A statistical approach to the detection and tracking of moving objects in an image sequence,” Signal. Proc. 5, 947–950 (1990).
  12. P. Lalande, “Détection du mouvement dans les séquences d’images selon une approche markovienne; application à la robotique sous-marine,” Ph.D. dissertation (Université de Rennes I, Rennes, France, 1990).
  13. A. Caplier, “Modèles markoviens de détection du mouvement dans les séquences d’images. Approches sptio-temporelle et mises en œuvre temps réel,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1995).
  14. Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995). [CrossRef]
  15. Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999). [CrossRef]
  16. P. Chavel, Ph. Lalanne, “On parallel algorithms for optical image processors,” in Optical Computing: Proceedings of the International Conference, Heriot-Watt University, Edinburgh, UK, August 22–25 1994, B. S. Wherrett, ed. (Institute of Physics, London, 1995), pp. 11–16.
  17. A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).
  18. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996). [CrossRef]
  19. A. V. Krishnamoorthy, K. W. Goosen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAS/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).
  20. D. A. B. Miller, “Quantum well self-electrooptic devices,” Opt. Quantum Electron. 22, 61–98 (1990).
  21. M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).
  22. G. Prémont, “Photothyristors PnpN et recuit simulé optoélectronique pour la vision bas-niveau,” Thèse de l’université de Paris-Sud, Orsay, France (1999).
  23. B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995). [CrossRef]
  24. P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992). [CrossRef]
  25. K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995). [CrossRef]
  26. M. P. Y. Desmulliez, B. S. Wherrett, “Trends in hybrid-VLSI optoelectronics for optical information processing,” in Optical Interconnections and Computing, M. Lapp, A. Hasegawa, B. J. Snavely, H. Starle, A. C. Tam, T. Wilson, eds. (Oxford U. Press, Oxford Series of Optical and Imaging Sciences, London) (to be published).
  27. I. Seyd-Darwish, “Etude et réalisation d’un automate cellulaire optoélectronique parallèle,” Ph.D. dissertation (de l’Université de Paris Sud, Orsay, France, 1991).
  28. M. P. Y. Desmulliez, B. S. Wherret, A. J. Waddie, J. F. Snowdon, J. A. B. Dines, “Performance analysis of self-electro-optic-effect-device-based (SEED-based) smart-pixel arrays used in data sorting,” Appl. Opt. 35, 6397–6415 (1996). [CrossRef] [PubMed]
  29. A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994). [CrossRef]
  30. J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.
  31. C. Dumontier, “Etude et mise en œuvre temps réel d’un algorithme de detection du mouvement par approche markovienne,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1996).
  32. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996). [CrossRef] [PubMed]
  33. R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999). [CrossRef]
  34. J. M. Wu, Ch. B. Kuznia, B. Hoanca, Ch. H. Chen, A. A. Sawchuk, “Demonstration and architectural analysis of complementary metal-oxide semiconductor/multiple-quantum-well smart-pixel array cellular logic processors for single-instruction multiple-data parallel-pipeline processing,” Appl. Opt. 38, 2270–2281 (1999). [CrossRef]
  35. A. C. Walker, T.-Y. Yang, J. Gourlay, J. A. B. Dines, M. G. Forbes, S. M. Prince, D. A. Baillie, D. T. Neilson, R. Williams, L. C. Wilkinson, G. R. Smith, M. P. Y. Desmulliez, G. S. Buller, M. R. Taghizadeh, A. Waddie, I. Underwood, C. R. Stanley, F. Pottier, B. Vögele, W. Sibbett, “Optoelectronic systems based on InGaAs–complementary-metal-oxide-semiconductor smart-pixel arrays and free-space optical interconnects,” Appl. Opt. 37, 2822–2830 (1998). [CrossRef]
  36. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993). [CrossRef]
  37. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994). [CrossRef]
  38. Advanced research initiative in microelectronics, IST programme for Future and Emerging Technologies: Technology roadmap for Optoelectronic Interconnects for Integrated Circuits (MEL-ARI OPTO), published by the European Commission with no author name, (September1999). http://www.cordis.lu/esprit/src/melari.htm
  39. M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999). [CrossRef]
  40. H. M. Ozatkas, J. W. Goodman, “Lower bound for the communication volume required for optically interconnected array of points,” J. Opt. Soc. Am. A 7, 2100–2106 (1990). [CrossRef]
  41. S. Lin, A. Grot, J. Luo, D. Psaltis, “GaAs optoelectronic neuron arrays,” Appl. Opt. 32, 1275–1288 (1992). [CrossRef]
  42. I. Bar-Tana, J. P. Sharpe, D. J. McKnight, K. M. Johnson, “Smart-pixel spatial light modulator for incorporation in an optoelectronic neural network,” Opt. Lett. 20, 303–305 (1995). [CrossRef] [PubMed]
  43. A. Kirk, T. Tabata, M. Ishikawa, “Design of an optoelectronic cellular processing system with a reconfigurable holographic interconnect,” Appl. Opt. 33, 1629–1639 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited