OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 35 — Dec. 10, 2001
  • pp: 6505–6514

Sparse Matrix Approximation Method for an Active Optical Control System

Timothy P. Murphy, Richard G. Lyon, John E. Dorband, and Jan M. Hollis  »View Author Affiliations


Applied Optics, Vol. 40, Issue 35, pp. 6505-6514 (2001)
http://dx.doi.org/10.1364/AO.40.006505


View Full Text Article

Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a sparse matrix approximation method to decompose a wave front into a basis set of actuator influence functions for an active optical system consisting of a deformable mirror and a segmented primary mirror. The wave front used is constructed by Zernike polynomials to simulate the output of a phase-retrieval algorithm. Results of a Monte Carlo simulation of the optical control loop are compared with the standard, nonsparse approach in terms of accuracy and precision, as well as computational speed and memory. The sparse matrix approximation method can yield more than a 50-fold increase in the speed and a 20-fold reduction in matrix size and a commensurate decrease in required memory, with less than 10% degradation in solution accuracy. Our method is also shown to be better than when elements are selected for the sparse matrix on a magnitude basis alone. We show that the method developed is a viable alternative to use of the full control matrix in a phase-retrieval-based active optical control system.

© 2001 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.1260) Other areas of optics : Astronomical optics
(350.6090) Other areas of optics : Space optics

Citation
Timothy P. Murphy, Richard G. Lyon, John E. Dorband, and Jan M. Hollis, "Sparse Matrix Approximation Method for an Active Optical Control System," Appl. Opt. 40, 6505-6514 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-35-6505


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. L. Ellerbroek, B. J. Thelen, D. J. Lee, D. A. Carrara, and R. G. Paxman, “Comparison of Shack–Hartmann wavefront sensing and phase-diverse phase retrieval,” in Adaptive Optics and Applications, R. K. Tyson and R. Q. Fugate, ed., Proc. SPIE 3126, 307–320 (1997).
  2. P. Hariharan, Optical Interferometry (Academic, Sydney, Australia, 1985).
  3. L. Salas, “Variable separation in curvature sensing: fast method for solving the irradiance transport equation in the context of optical telescopes,” Appl. Opt. 35, 1593–1596 (1996).
  4. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  5. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982).
  6. R. G. Lyon, J. E. Dorband, and J. M. Hollis, “Hubble space telescope faint object camera calculated point-spread functions,” Appl. Opt. 36, 1752–1765 (1997).
  7. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1728–1736 (1993).
  8. W. J. Wild, E. J. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics systems for large ground-based telescopes,” Opt. Lett. 20, 955–957 (1995).
  9. R. Schneider, P. L. Levin, and M. Spasojevic, “Multiscale compression of BEM equations for electrostatic systems,” IEEE Trans. Dielectr. Electr. Insul. 3, 482–493 (1996).
  10. M. A. Player, J. Van Weereld, A. R. Allen, and D. A. L. Collie, “Truncated-Newton algorithm for three-dimensional electrical impedance tomography,” Electron. Lett. 35, 2189–2191 (1999).
  11. E. W. Justh, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, and P. S. Krishnaprasad, “Adaptive optics with advanced phase-contrast techniques. II. High-resolution wave-front control,” J. Opt. Soc. Am. A 18, 1300–1311 (2001).
  12. G. W. Carhart, M. A. Vorontsov, M. Cohen, G. Cauwenberghs, and R. T. Edwards, “Adaptive wavefront correction using a VLSI implementation of the parallel gradient descent algorithm,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski and M. A. Vorontsov, eds., Proc. SPIE 3760, 61–67 (1999).
  13. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (McGraw-Hill, New York, 1959).
  14. Xinetics Inc., 37 MacArthur Ave., Devens, Mass. 01432; http://www.tiac.net/users/xinetics.
  15. M. A. Ealey and J. A. Wellman, “Xinetics low cost deformable mirrors with actuator replacement cartridges,” in Adaptive Optics in Astronomy, M. A. Ealey and F. Merkle, eds., Proc. SPIE 2201, 680–687 (1994).
  16. G. Strang, Linear Algebra and Its Applications (Academic, New York, 1976).
  17. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  18. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins U. Press, Baltimore, Md., 1996).
  19. W. H. Press, B. P. Flannery, S. A. Teulkolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  20. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The Complete Reference (MIT, Cambridge, Mass., 1997).
  21. For a description of the Highly Parallel Integrated Virtual Environment (HIVE), see http://newton.gsfc.nasa.gov/thehive/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited